The Bernstein Voronovskaja-type theorem for positive linear approximation operators

被引:18
作者
Gavrea, Ioan [1 ]
Ivan, Mircea [1 ]
机构
[1] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400114, Romania
关键词
Bernstein-Voronovskaja theorem; Positive linear operators; Central moments; Rate of convergence;
D O I
10.1016/j.jat.2014.12.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the classical Bernstein Voronovskaja-type theorem remains valid in general for all sequences of positive linear approximation operators. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:291 / 296
页数:6
相关论文
共 50 条
  • [41] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12
  • [42] On uniform approximation by some classical Bernstein-type operators
    de la Cal, J
    Cárcamo, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) : 625 - 638
  • [43] APPROXIMATION OF FUNCTIONS BY GENUINE BERNSTEIN-DURRMEYER TYPE OPERATORS
    Acar, Tuncer
    Acu, Ana Maria
    Manav, Nesibe
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 975 - 987
  • [44] Approximation by Kantorovich Type q-Bernstein-Stancu Operators
    M. Mursaleen
    Khursheed J. Ansari
    Asif Khan
    Complex Analysis and Operator Theory, 2017, 11 : 85 - 107
  • [45] Approximation Degree of Bivariate Generalized λ-Bernstein - Kantorovich Type Operators
    Agrawal, Purshottam Narain
    Baxhaku, Behar
    Singh, Sompal
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (12) : 1484 - 1509
  • [46] On the order of weighted approximation by positive linear operators
    Coskun, Tulin
    TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (01) : 113 - 120
  • [47] A Voronovskaja type formula for Soardi's operators
    Abel, Ulrich
    Rasa, Ioan
    POSITIVITY, 2022, 26 (03)
  • [48] A Voronovskaja type formula for Soardi’s operators
    Ulrich Abel
    Ioan Raşa
    Positivity, 2022, 26
  • [49] APPROXIMATION PROPERTIES OF MODIFIED KANTOROVICH TYPE (p, q)-BERNSTEIN OPERATORS
    Yu, Kan
    Cheng, Wentao
    Fan, Ligang
    Zhou, Xiaoling
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 547 - 558
  • [50] APPROXIMATION PROPERTIES OF GENERALIZED BLENDING TYPE LOTOTSKY-BERNSTEIN OPERATORS
    Aktuglu, Huseyin
    Gezer, Halil
    Baytunc, Erdem
    Atamert, Mehmet Salih
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02): : 707 - 728