The Bernstein Voronovskaja-type theorem for positive linear approximation operators

被引:18
|
作者
Gavrea, Ioan [1 ]
Ivan, Mircea [1 ]
机构
[1] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400114, Romania
关键词
Bernstein-Voronovskaja theorem; Positive linear operators; Central moments; Rate of convergence;
D O I
10.1016/j.jat.2014.12.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the classical Bernstein Voronovskaja-type theorem remains valid in general for all sequences of positive linear approximation operators. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:291 / 296
页数:6
相关论文
共 50 条
  • [31] Approximation by Kantorovich Type q-Bernstein-Stancu Operators
    Mursaleen, M.
    Ansari, Khursheed J.
    Khan, Asif
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (01) : 85 - 107
  • [32] On the application of linear positive operators for approximation of functions
    Gashkov, S. B.
    MATHEMATICAL NOTES, 2016, 100 (5-6) : 666 - 676
  • [33] Uniform weighted approximation by positive linear operators
    Holhos, Adrian
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (03): : 135 - 146
  • [34] STATISTICAL RATES IN APPROXIMATION BY POSITIVE LINEAR OPERATORS
    Erkus-Duman, Esra
    MISKOLC MATHEMATICAL NOTES, 2011, 12 (02) : 159 - 166
  • [35] Better Numerical Approximation by λ-Durrmeyer-Bernstein Type Operators
    Radu, Voichita Adriana
    Agrawal, Purshottam Narain
    Singh, Jitendra Kumar
    FILOMAT, 2021, 35 (04) : 1405 - 1419
  • [36] APPROXIMATION PROPERTIES OF CERTAIN BERNSTEIN-STANCU TYPE OPERATORS
    Acu, Ana-Maria
    Dogru, Ogun
    Muraru, Carmen Violeta
    Radu, Voichita Adriana
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (03): : 687 - 702
  • [37] Approximation of a kind of new Bernstein-Bezier type operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    Zhang, Wen-Hui
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 355 - 364
  • [38] Approximation in Banach space by linear positive operators
    Arash Ghorbanalizadeh
    Yoshihiro Sawano
    Positivity, 2014, 18 : 585 - 594
  • [39] Approximation in Banach space by linear positive operators
    Ghorbanalizadeh, Arash
    Sawano, Yoshihiro
    POSITIVITY, 2014, 18 (03) : 585 - 594
  • [40] On the application of linear positive operators for approximation of functions
    S. B. Gashkov
    Mathematical Notes, 2016, 100 : 666 - 676