Control of Carrier Type and Density in Exfoliated Graphene by Interface Engineering

被引:130
作者
Wang, Rui [1 ,2 ]
Wang, Shengnan [1 ,3 ]
Zhang, Dongdong [1 ,2 ]
Li, Zhongjun [1 ]
Fang, Ying [1 ]
Qiu, Xiaohui [1 ]
机构
[1] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
[2] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
[3] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
graphene; interface; doping; Raman; Fermi level; SELF-ASSEMBLED MONOLAYERS; FEW-LAYER GRAPHENE; RAMAN-SPECTROSCOPY; SUSPENDED GRAPHENE; CHARGE; FIELD; POLARIZABILITY; TRANSISTORS; MEMBRANES; FILMS;
D O I
10.1021/nn102236x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Air stable n-doped or p-doped grapliene sheets on a chip were achieved by modifying the substrates with self-assembled layers of silaile and polymer. The interfacial effects on the electronic properties of graphene were investigated using micro Raman and Kelvin probe force microscopy (KPFM). Raman studies demonstrated that the phonon vibrations were sensitive to the doping level of graphene on the various substrates. Complementary information on the charge transfer between the graphene and substrate was extracted by measuring the surface potential of graphene flakes using KPFM, which Illustrated the distribution of carriers indifferent graphene layers as well as the formation of dipoles at the interface. The Fermi level of single layer graphene an the modified substrates could be tuned in a range from - 130 to 90 mV with respect to the Dirac point, corresponding to the doped carrier concentrations up to 10(12) cm(-2).
引用
收藏
页码:408 / 412
页数:5
相关论文
共 32 条
[1]   Effects of Surface Chemistry on Structure and Thermodynamics of Water Layers at Solid-Vapor Interfaces [J].
Asay, David B. ;
Barnette, Anna L. ;
Kim, Seong H. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (06) :2128-2133
[2]   Evolution of the adsorbed water layer structure on silicon oxide at room temperature [J].
Asay, DB ;
Kim, SH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (35) :16760-16763
[3]   Effects of Metallic Contacts on Electron Transport through Graphene [J].
Barraza-Lopez, Salvador ;
Vanevic, Mihajlo ;
Kindermann, Markus ;
Chou, M. Y. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[4]   Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers [J].
Berciaud, Stephane ;
Ryu, Sunmin ;
Brus, Louis E. ;
Heinz, Tony F. .
NANO LETTERS, 2009, 9 (01) :346-352
[5]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[6]   Hysteresis in the resistance of a graphene device induced by charge modulation in the substrate [J].
Brant, J. C. ;
Leon, J. ;
Barbosa, T. C. ;
Araujo, E. N. D. ;
Archanjo, B. S. ;
Plentz, F. ;
Alves, E. S. .
APPLIED PHYSICS LETTERS, 2010, 97 (04)
[7]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[8]   Controlling charge injection in organic electronic devices using self-assembled monolayers [J].
Campbell, IH ;
Kress, JD ;
Martin, RL ;
Smith, DL ;
Barashkov, NN ;
Ferraris, JP .
APPLIED PHYSICS LETTERS, 1997, 71 (24) :3528-3530
[9]   Electrostatic field and partial Fermi level pinning at the pentacene-SiO2 interface [J].
Chen, LW ;
Ludeke, R ;
Cui, XD ;
Schrott, AG ;
Kagan, CR ;
Brus, LE .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (05) :1834-1838
[10]   Quantitative noncontact electrostatic force Imaging of nanocrystal polarizability [J].
Cherniavskaya, O ;
Chen, LW ;
Weng, V ;
Yuditsky, L ;
Brus, LE .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (07) :1525-1531