Critical boundary value problems in the upper half-space

被引:3
作者
Furtado, Marcelo F. [1 ]
da Silva, Joao Pablo P. [2 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Para, Dept Matemat, BR-66075110 Belem, Para, Brazil
关键词
Weighted trace embedding; Critical problems; Nonlinear boundary conditions; Self-similar solutions; Half-space; SELF-SIMILAR SOLUTIONS; POSITIVE SOLUTIONS; CONFORMAL DEFORMATION; SOBOLEV INEQUALITIES; UNIQUENESS THEOREMS; EXISTENCE; MULTIPLICITY; EQUATIONS; CONSTANT;
D O I
10.1016/j.na.2021.112441
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the critical problem -Delta u - 1/2 (x.del u) = 0 in R-+(N), partial derivative u/partial derivative nu = lambda vertical bar u vertical bar(p-2)u + vertical bar u vertical bar(2)*(-2)u on partial derivative R-+(N), where R-+(N) - {x', x(N)) : x' is an element of RN-1, x(N) > 0} is the upper half-space, N >= 4, nu is the outward normal vector at the boundary and 2 <= p < 2(*) := 2(N - 1)/(N - 2). Using a variational approach, we obtain nonnegative nonzero solutions according to the value of the parameter lambda > 0. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 22 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[3]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[4]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[5]   Layer solutions in a half-space for boundary reactions [J].
Cabré, X ;
Solà-Morales, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (12) :1678-1732
[6]   Existence of positive solutions of a semilinear elliptic equation in R+n with a nonlinear boundary condition [J].
Chipot, M ;
Chlebik, M ;
Fila, M ;
Shafrir, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 223 (02) :429-471
[7]  
Chipot M., 1996, Adv. Differ. Equ, V1, P91
[8]  
Ciarlet P., 1988, MATH ELASTICITY VOL, VI
[9]   Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains [J].
del Pino, M ;
Flores, C .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) :2189-2210
[10]  
Diaz J. I., 1985, Elliptic Equations, Res. Notes Math., V106