Hybrid catalysts containing Ba, Ti, Mn, Na, and W for the low-temperature oxidative coupling of methane

被引:18
作者
Do, Lien Thi [1 ]
Choi, Jae-Wook [1 ]
Suh, Dong Jin [1 ]
Yoo, Chun-Jae [1 ]
Lee, Hyunjoo [1 ,2 ]
Ha, Jeong-Myeong [1 ,2 ]
机构
[1] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 02792, South Korea
[2] Korea Univ Sci & Technol, KIST Sch, Div Energy & Environm Technol, Seoul 02792, South Korea
基金
新加坡国家研究基金会;
关键词
Oxidative coupling; Methane; BaTiO3; Mn-Na2WO4; TUNGSTEN-OXIDE CATALYSTS; NA2WO4/MN/SIO2; CATALYST; REACTION NETWORK; MN/NA2WO4/SIO2; MN-NA2WO4/SIO2; DECOMPOSITION; PEROVSKITES; PERFORMANCE; FEATURES; MODEL;
D O I
10.1016/j.apcatb.2021.120553
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The oxidative coupling of methane (OCM) using hybrid catalysts containing BaTiO3 perovskite and Mn-Na2WO4 exhibited high activity and high selectivity at low temperature: 66.3 % C2+ (olefins and paraffins) selectivity and 25.9 % C2+ yield at 700 degrees C which is 100 degrees C lower than that used for Mn-Na2WO4 catalysts (800 degrees C). Upon the preparation of complex catalysts, the insertion of Mn into BaTiO3 (BaTi(Mn)O-3) and the formation of NaxMn(Ti) O-2 improved the oxygen-supplying ability of the catalysts. Additionally, strong interactions between the WO(4)(2-)anions and BaTi(Mn)O-3 or NaxMn(Ti)O-2 stabilized the WO42- anions on the surface and improved the methane activation ability of the catalysts for the favorable production of hydrocarbons. The nanoscopic modification of catalysts was confirmed using H-2-temperature-programmed reduction, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy results.
引用
收藏
页数:14
相关论文
共 71 条
[1]   REFINEMENT OF HEXAGONAL BATIO3 [J].
AKIMOTO, J ;
GOTOH, Y ;
OOSAWA, Y .
ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS, 1994, 50 :160-161
[2]   Mn-Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? [J].
Arndt, S. ;
Otremba, T. ;
Simon, U. ;
Yildiz, M. ;
Schubert, H. ;
Schomaecker, R. .
APPLIED CATALYSIS A-GENERAL, 2012, 425 :53-61
[3]   Impact of Surface Composition of SrTiO3 Catalysts for Oxidative Coupling of Methane [J].
Bai, Lei ;
Polo-Garzon, Felipe ;
Bao, Zhenghong ;
Luo, Si ;
Moskowitz, Benjamin M. ;
Tian, Hanjing ;
Wu, Zili .
CHEMCATCHEM, 2019, 11 (08) :2107-2117
[4]   Significant Advances in C1 Catalysis: Highly Efficient Catalysts and Catalytic Reactions [J].
Bao, Jun ;
Yang, Guohui ;
Yoneyama, Yoshiharu ;
Tsubaki, Noritatsu .
ACS CATALYSIS, 2019, 9 (04) :3026-3053
[5]   Comparative spontaneous Raman spectroscopy of crystals for Raman lasers [J].
Basiev, TT ;
Sobol, AA ;
Zverev, PG ;
Osiko, VV ;
Powell, RC .
APPLIED OPTICS, 1999, 38 (03) :594-598
[6]   OXIDATIVE COUPLING OF METHANE OVER BA2SB(LA0.5BI0.5)O6 AND OTHER PEROVSKITE OXIDE CATALYSTS [J].
BATTLE, PD ;
CARR, SW ;
COPPLESTONE, FA ;
ALMAER, SA .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1992, (11) :826-827
[7]   Effects of ordered mesoporous bimodal structures of Fe/KIT-6 for CO hydrogenation activity to hydrocarbons [J].
Cho, Jae Min ;
Han, Gui Young ;
Jeong, Hae-Kwon ;
Roh, Hyun-Seog ;
Bae, Jong Wook .
CHEMICAL ENGINEERING JOURNAL, 2018, 354 :197-207
[8]   Envisioning the Bioconversion of Methane to Liquid Fuels [J].
Conrado, Robert J. ;
Gonzalez, Ramon .
SCIENCE, 2014, 343 (6171) :621-623
[9]   Characterization of none and yttrium-modified Ni-based catalysts for dry reforming of methane [J].
Damyanova, Sonia ;
Shtereva, Iskra ;
Pawelec, Barbara ;
Mihaylov, Lyuben ;
Fierro, Jose Luis G. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 278
[10]   Structural Polymorphism of Mn-Doped BaTiO3 [J].
Dang, N. T. ;
Kozlenko, D. P. ;
Phan, T. L. ;
Kichanov, S. E. ;
Dang, N. V. ;
Thanh, T. D. ;
Khiem, L. H. ;
Jabarov, S. H. ;
Tran, T. A. ;
Vo, D. B. ;
Savenko, B. N. .
JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (05) :2477-2483