An Augmented Model Approach for Identification of Nonlinear Errors-in-Variables Systems Using the EM Algorithm

被引:22
作者
Guo, Fan [1 ,2 ]
Wu, Ouyang [2 ]
Kodamana, Hariprasad [2 ]
Ding, Yongsheng [1 ]
Huang, Biao [2 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Engn Res Ctr Digitized Text & Apparel Technol, Minist Educ, Shanghai 201620, Peoples R China
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2018年 / 48卷 / 11期
基金
中国国家自然科学基金;
关键词
Augmented model; expectation maximization (EM) algorithm; multiple ARX models; nonlinear errors-in-variable (EIV) model; particle filter; REGRESSION; TRACKING;
D O I
10.1109/TSMC.2017.2692273
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an augmented model approach for identification of nonlinear errors-in-variables (EIVs) systems. An EIV model accounts for uncertainties in the observations of both inputs and outputs. As the direct identification of nonlinear functions is difficult, we propose to approximate the nonlinear EIV model using multiple ARX models. To estimate the noise-free input signal, we use a collection of particle filters which run in parallel corresponding to each of the multiple ARX models. The parameters of local models are estimated by applying expectation maximization algorithm, under a maximum likelihood framework, using the input-output data of the nonlinear EIV system. Simulated numerical examples and an experiment study on a multitank system are used to illustrate the efficacy of the proposed approach.
引用
收藏
页码:1968 / 1978
页数:11
相关论文
共 43 条
[1]  
[Anonymous], 2009, MEASUREMENT ERROR MO
[2]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[3]   Identification of linear parameter varying models [J].
Bamieh, B ;
Giarré, L .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2002, 12 (09) :841-853
[4]   Estimation of nonlinear systems using linear multiple models [J].
Banerjee, A ;
Arkun, Y ;
Ogunnaike, B ;
Pearson, R .
AICHE JOURNAL, 1997, 43 (05) :1204-1226
[5]   Novel mechanism for spinning continuous twisted composite nanofiber yarns [J].
Bazbouz, Mohamed Basel ;
Stylios, George K. .
EUROPEAN POLYMER JOURNAL, 2008, 44 (01) :1-12
[6]   SELF-HEATING OF COAL AND RELATED MATERIALS - MODELS, APPLICATION AND TEST METHODS [J].
CARRAS, JN ;
YOUNG, BC .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 1994, 20 (01) :1-15
[7]  
Casella G., 2021, Statistical Inference
[8]   Multiple model approach to nonlinear system identification with an uncertain scheduling variable using EM algorithm [J].
Chen, Lei ;
Tulsyan, Aditya ;
Huang, Biao ;
Liu, Fei .
JOURNAL OF PROCESS CONTROL, 2013, 23 (10) :1480-1496
[9]  
Cheng C. L., 1999, KENDALLS LIB STAT
[10]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38