TOPSOIL MOISTURE ESTIMATION FOR PRECISION AGRICULTURE USING UNMMANED AERIAL VEHICLE MULTISPECTRAL IMAGERY

被引:28
作者
Hassan-Esfahani, Leila [1 ]
Torres-Rua, Alfonso [1 ]
Ticlavilca, Andres M. [1 ]
Jensen, Austin [1 ]
McKee, Mac [1 ]
机构
[1] Utah State Univ, Utah Water Res Lab, Logan, UT 84322 USA
来源
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2014年
关键词
Remote Sensing; High Resolution Imaging; AggieAir; Soil Moisture; Learning Machines;
D O I
10.1109/IGARSS.2014.6947175
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
There is an increasing trend in crop production management decisions in precision agriculture based on observation of high resolution aerial images from unmanned aerial vehicles (UAV). Nevertheless, there are still limitations in terms of relating the spectral imagery information to the agricultural targets. AggieAir (TM) is a small, autonomous unmanned aircraft which carries multispectral cameras to capture aerial imagery during pre-programmed flights. AggieAir enables users to gather imagery at greater spatial and temporal resolution than most manned aircraft and satellite sources. The platform has been successfully used in support of a wide variety of water and natural resources management areas. This paper presents results of an on-going research in the application of the imagery from AggieAir in the remote sensing of top soil moisture estimations for a large field served by a center pivot sprinkler irrigation system.
引用
收藏
页数:4
相关论文
共 11 条
  • [1] Al-Arab M., 2013, P IEEE INT GEOSC REM
  • [2] Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle
    Berni, Jose A. J.
    Zarco-Tejada, Pablo J.
    Suarez, Lola
    Fereres, Elias
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03): : 722 - 738
  • [3] Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
    Haboudane, D
    Miller, JR
    Pattey, E
    Zarco-Tejada, PJ
    Strachan, IB
    [J]. REMOTE SENSING OF ENVIRONMENT, 2004, 90 (03) : 337 - 352
  • [4] Characterising and mapping vineyard canopy using high-spatial-resolution aerial multispectral images
    Hall, A
    Louis, J
    Lamb, D
    [J]. COMPUTERS & GEOSCIENCES, 2003, 29 (07) : 813 - 822
  • [5] Hassan-Esfahani L., 2014, SPRING RUN C
  • [6] Jensen A. M., 2009, P IEEE INT GEOSC REM
  • [7] Jensen A. M., 2011, P IEEE INT GEOSC REM
  • [8] Jensen AM, 2012, INT GEOSCI REMOTE SE, P5049, DOI 10.1109/IGARSS.2012.6352476
  • [9] Tipping M., 2003, P 9 INT WORKSH ART I, V1
  • [10] Sparse Bayesian learning and the relevance vector machine
    Tipping, ME
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2001, 1 (03) : 211 - 244