Regression function estimation on non compact support in an heteroscesdastic model

被引:5
作者
Comte, F. [1 ]
Genon-Catalot, V. [1 ]
机构
[1] Univ Paris 05, Lab MAP5, CNRS, UMR 8145, Paris, France
关键词
Heteroscedatic regression model; Least squares estimation; Model selection; Projection estimator; LAGUERRE; BOUNDS;
D O I
10.1007/s00184-019-00727-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the problem of nonparametric regression function estimation on non necessarily compact support in a heteroscedastic model with non necessarily bounded variance. A collection of least squares projection estimators on m-dimensional functional linear spaces is built. We prove new risk bounds for the estimator with fixed m and propose a new selection procedure relying on inverse problems methods leading to an adaptive estimator. Contrary to more standard cases, the data-driven dimension is chosen within a random set and the penalty is random. Examples and numerical simulations results show that the procedure is easy to implement and provides satisfactory estimators.
引用
收藏
页码:93 / 128
页数:36
相关论文
共 22 条
[21]   User-Friendly Tail Bounds for Sums of Random Matrices [J].
Tropp, Joel A. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (04) :389-434
[22]  
Tsybakov AB, 2009, SPRINGER SER STAT, P1, DOI 10.1007/978-0-387-79052-7_1