Heteroscedatic regression model;
Least squares estimation;
Model selection;
Projection estimator;
LAGUERRE;
BOUNDS;
D O I:
10.1007/s00184-019-00727-4
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We study the problem of nonparametric regression function estimation on non necessarily compact support in a heteroscedastic model with non necessarily bounded variance. A collection of least squares projection estimators on m-dimensional functional linear spaces is built. We prove new risk bounds for the estimator with fixed m and propose a new selection procedure relying on inverse problems methods leading to an adaptive estimator. Contrary to more standard cases, the data-driven dimension is chosen within a random set and the penalty is random. Examples and numerical simulations results show that the procedure is easy to implement and provides satisfactory estimators.