Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems

被引:12
作者
Bagirov, Adil M. [1 ]
Ugon, Julien [1 ]
Mirzayeva, Hijran G. [1 ]
机构
[1] Federat Univ Australia, Sch Sci Informat Technol & Engn, Fac Sci, Ballarat, Vic 3353, Australia
基金
澳大利亚研究理事会;
关键词
Nonsmooth optimization; Nonconvex optimization; Clusterwise linear regression; Discrete gradient method; ARTIFICIAL NEURAL-NETWORKS; METHODOLOGY;
D O I
10.1007/s10957-014-0566-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Clusterwise linear regression consists of finding a number of linear regression functions each approximating a subset of the data. In this paper, the clusterwise linear regression problem is formulated as a nonsmooth nonconvex optimization problem and an algorithm based on an incremental approach and on the discrete gradient method of nonsmooth optimization is designed to solve it. This algorithm incrementally divides the whole dataset into groups which can be easily approximated by one linear regression function. A special procedure is introduced to generate good starting points for solving global optimization problems at each iteration of the incremental algorithm. The algorithm is compared with the multi-start Spath and the incremental algorithms on several publicly available datasets for regression analysis.
引用
收藏
页码:755 / 780
页数:26
相关论文
共 22 条
[1]  
Bache K, 2013, UCI machine learning repository
[2]   Discrete gradient method:: Derivative-free method for nonsmooth optimization [J].
Bagirov, A. M. ;
Karasoezen, B. ;
Sezer, M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 137 (02) :317-334
[3]   Piecewise partially separable functions and a derivative-free algorithm for large scale nonsmooth optimization [J].
Bagirov, Adil M. ;
Ugon, Julien .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (02) :163-195
[4]   Nonsmooth nonconvex optimization approach to clusterwise linear regression problems [J].
Bagirov, Adil M. ;
Ugon, Julien ;
Mirzayeva, Hijran .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 229 (01) :132-142
[5]  
BAGIROV AM, 2003, J MATH SCI, V115, P2567, DOI DOI 10.1023/A:1023227716953
[6]  
Caporossi G., 2005, TECHNICAL REPORT
[7]   Globally optimal clusterwise regression by mixed logical-quadratic programming [J].
Carbonneau, Real A. ;
Caporossi, Gilles ;
Hansen, Pierre .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 212 (01) :213-222
[8]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[9]  
Cortez P., 2007, Proceedings of 13th Portuguese Conference on Artificial Intelligence, APPIA
[10]   Modeling wine preferences by data mining from physicochemical properties [J].
Cortez, Paulo ;
Cerdeira, Antonio ;
Almeida, Fernando ;
Matos, Telmo ;
Reis, Jose .
DECISION SUPPORT SYSTEMS, 2009, 47 (04) :547-553