A study on cassava tolerance to and growth responses under salt stress

被引:21
|
作者
Cheng, Yan-E [1 ]
Dong, Ming-You [1 ]
Fan, Xian-Wei [1 ]
Nong, Li-Li [1 ]
Li, You-Zhi [1 ]
机构
[1] Guangxi Univ, Coll Life Sci & Technol, State Key Lab Conservat & Utilizat Subtrop Agrobi, 100 Daxue Rd, Nanning 530004, Guangxi, Peoples R China
关键词
Cassava; Salt stress; Phenotypes; Starch; Roots; Endogenous hormones; Antioxidant enzymes; Gene expression; A20/AN1; ZINC-FINGER; MANIHOT-ESCULENTA CRANTZ; SAP GENE FAMILY; ABIOTIC STRESS; EXPRESSION ANALYSIS; SOLUBLE SUGARS; RICE; PLANTS; ACCUMULATION; PROTEINS;
D O I
10.1016/j.envexpbot.2018.07.022
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soil salinity, commonly dominated by NaCl, is a major constraint to the production of food crops. Cassava (Manihot esculenta) is the most important tropical starch-producing crop. Reportedly, this crop is moderately sensitive to salt stress, and the A20/AN1-type zinc finger genes can confer abiotic stress tolerance to plants as the emerging target genes. However, neither cassava tolerance to salt nor the response of A20/AN1-type zinc finger genes from cassava to salt has yet to be characterized in detail. South China 124 (SC124), Fuxuan 01, South China 205, Kasetsart 50 and Argentina 7 (C4), somewhat differ in salt tolerance and starch content in storage roots under pre-established NaCl concentrations of 0, 10, 20, 30, 40, 50, 100, and 200 mM. In this study, we investigated responses of in vitro-grown plantlets of these five cultivars, focusing on plantlet growth, phytohormones, antioxidant enzymes, soluble protein and sugar, H2O2 content, and expression of A20/AN1-type zinc finger genes. The major results were as follows: the growth of cassava was obviously inhibited, starting at 20 mM NaCl depending on the cultivars. All five cultivars could not grow at 100 mM NaCl; 10 mM NaCl caused promoted growth by increasing number, volume, surface area, viability, length of fibrous rootlets, and elongated root cells; 20 mM NaCl facilitated both accumulation of total starch in fibrous rootlets and increase in total protein content in shoots; increased growth and starch accumulation did not correlate with phytohormone levels, antioxidant enzyme activities between shoots and rootlets, or, consequently, in the whole plantlets; and the A20/AN1 gene family was composed of at least 11 members and their expression was induced or suppressed in rootlets of plantlets of pot-grown SC124 under 200 mM NaCl, depending on gene members. In conclusion, low salt (NaCl) can not only promote the cassava growth but also lead to accumulation of total starch in the fibrous rootlets and increase in total protein content in shoots instead of rootlets. Low salt promoting growth effects are likely associated with lower levels of abscisic acid and higher levels of gibberellin and indole-3-acetic acid under salt stress. Such antagonistic relationship among these three phytohormones maybe involves expression of A20/AN1 genes under salt stress. The demand for H2O2 levels, osmoprotectants, and antioxidant enzyme activities in salt stress responses is cassava cultivar-dependent.
引用
收藏
页码:429 / 440
页数:12
相关论文
共 50 条
  • [31] RAPD Markers Associated with Salt Tolerance in Soybean Genotypes Under Salt Stress
    Faheema Khan
    Khalid Rehman Hakeem
    Tariq O. Siddiqi
    Altaf Ahmad
    Applied Biochemistry and Biotechnology, 2013, 170 : 257 - 272
  • [32] Growth and Physiological Responses of Peanut Seedling to Salt Stress
    Chen, Tingting
    Zeng, Ruier
    Wang, Xinyue
    Zhang, Jialei
    Ci, Dunwei
    Chen, Yong
    Wang, Xiaolong
    Wan, Shubo
    Zhang, Lei
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2019, 22 (05) : 1181 - 1186
  • [33] GROWTH RESPONSES OF SALT TOLERANT TURFGRASS TO SALINITY STRESS
    Zulkaliph, Noor Azwa
    Juraimi, Abdul Shukor
    Uddin, Md Kamal
    Ismail, Mohd Razi
    Shamsuzzaman, S. M.
    BANGLADESH JOURNAL OF BOTANY, 2017, 46 (01): : 343 - 353
  • [34] Growth and physiological responses of cotton plants to salt stress
    Ma, Yingying
    Wei, Zhenhua
    Liu, Jie
    Liu, Xuezhi
    Liu, Fulai
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2021, 207 (03) : 565 - 576
  • [35] RESPONSES OF KENAF TO SALT STRESS - GERMINATION AND VEGETATIVE GROWTH
    CURTIS, PS
    LAUCHLI, A
    CROP SCIENCE, 1985, 25 (06) : 944 - 949
  • [36] Contrasting Responses of Plastid Terminal Oxidase Activity Under Salt Stress in Two C4Species With Different Salt Tolerance
    Essemine, Jemaa
    Lyu, Ming-Ju Amy
    Qu, Mingnan
    Perveen, Shahnaz
    Khan, Naveed
    Song, Qingfeng
    Chen, Genyun
    Zhu, Xin-Guang
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [37] Regulation of photosynthesis under salt stress and associated tolerance mechanisms
    Zahra, Noreen
    Al Hinai, Marwa Sulaiman
    Hafeez, Muhammad Bilal
    Rehman, Abdul
    Wahid, Abdul
    Siddique, Kadambot H. M.
    Farooq, Muhammad
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 178 : 55 - 69
  • [38] Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions 2.0
    Hasanuzzaman, Mirza
    Fujita, Masayuki
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (21)
  • [39] TOLERANCE OF PINUS PINASTER AIT. TO SALT: RESPONSES TO OXIDATIVE STRESS
    Azevedo, H.
    Lino-Neto, T.
    Tavares, R. M.
    ACTA PHYSIOLOGIAE PLANTARUM, 2004, 26 (03) : 201 - 201
  • [40] Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation, and antioxidant defense
    Patade, Vikas Yadav
    Bhargava, Sujata
    Suprasanna, Penna
    JOURNAL OF PLANT INTERACTIONS, 2011, 6 (04) : 275 - 282