Spectral duality in elliptic systems, six-dimensional gauge theories and topological strings

被引:30
作者
Mironov, A. [1 ,2 ,3 ,4 ]
Morozov, A. [2 ,3 ,4 ]
Zenkevich, Y. [2 ,4 ,5 ]
机构
[1] PN Lebedev Phys Inst, Theory Dept, Leninsky Pr 53, Moscow 119991, Russia
[2] ITEP, Bol Cheremushkinskaya 25, Moscow 117218, Russia
[3] Inst Informat Transmiss Problems, Bol Karetny Per 19 1, Moscow 127994, Russia
[4] Natl Res Nucl Univ MEPhI, Kashirskoe Highway 31, Moscow 115409, Russia
[5] Inst Nucl Res, 60 Letiya Oktyabrya Pr 7a, Moscow 117312, Russia
关键词
Topological Strings; Brane Dynamics in Gauge Theories; Integrable Hierarchies; String Duality; SEIBERG-WITTEN THEORY; RUI[!text type='JS']JS[!/text]ENAARS-SCHNEIDER MODEL; YANG-BAXTER EQUATION; SUSY FIELD-THEORIES; INTEGRABLE SYSTEMS; SUPERSYMMETRIC GAUGE; AGT RELATIONS; CONFORMAL BLOCKS; MIRROR SYMMETRY; MATRIX MODELS;
D O I
10.1007/JHEP05(2016)121
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider Dotsenko-Fateev matrix models associated with compactified Calabi-Yau threefolds. They can be constructed with the help of explicit expressions for refined topological vertex, i.e. are directly related to the corresponding topological string amplitudes. We describe a correspondence between these amplitudes, elliptic and affine type Selberg integrals and gauge theories in five and six dimensions with various matter content. We show that the theories of this type are connected by spectral dualities, which can be also seen at the level of elliptic Seiberg-Witten integrable systems. The most interesting are the spectral duality between the XYZ spin chain and the Ruijsenaars system, which is further lifted to self-duality of the double elliptic system.
引用
收藏
页数:44
相关论文
共 151 条
[31]   Classical r-matrices and the Feigin-Odesskii algebra via Hamiltonian and Poisson reductions [J].
Braden, HW ;
Dolgushev, VA ;
Olshanetsky, MA ;
Zotov, AV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (25) :6979-7000
[32]   FIVE DIMENSIONAL GAUGE THEORIES AND VERTEX OPERATORS [J].
Carlsson, Erik ;
Nekrasov, Nikita ;
Okounkov, Andrei .
MOSCOW MATHEMATICAL JOURNAL, 2014, 14 (01) :39-61
[33]   Non-perturbative topological strings and conformal blocks [J].
Cheng, Miranda C. N. ;
Dijkgraaf, Robbert ;
Vafa, Cumrun .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (09)
[34]   Instantons, quivers and noncommutative Donaldson-Thomas theory [J].
Cirafici, Michele ;
Sinkovics, Annamaria ;
Szabo, Richard J. .
NUCLEAR PHYSICS B, 2011, 853 (02) :508-605
[35]   Branes and mirror symmetry in N=2 supersymmetric gauge theories in three dimensions [J].
deBoer, J ;
Hori, K ;
Oz, Y ;
Yin, Z .
NUCLEAR PHYSICS B, 1997, 502 (1-2) :107-124
[36]   Mirror symmetry in three-dimensional gauge theories, SL(2,Z) and D-brane moduli spaces [J].
deBoer, J ;
Hori, K ;
Ooguri, H ;
Oz, Y ;
Yin, Z .
NUCLEAR PHYSICS B, 1997, 493 (1-2) :148-176
[37]  
Di Francesco P., 1997, GRADUATE TEXTS CONT, DOI DOI 10.1007/978-1-4612-2256-9
[38]   D-branes, monopoles and Nahm equations [J].
Diaconescu, DE .
NUCLEAR PHYSICS B, 1997, 503 (1-2) :220-238
[39]  
Dijkgraaf R., ARXIV09092453
[40]   Supersymmetric Yang-Mills theory and integrable systems [J].
Donagi, R ;
Witten, E .
NUCLEAR PHYSICS B, 1996, 460 (02) :299-334