An Efficient Deep Learning System for Epileptic Seizure Prediction

被引:6
作者
Abdelhameed, Ahmed M. [1 ]
Bayoumi, Magdy [1 ]
机构
[1] Univ Louisiana, Dept Elect & Comp Engn, Lafayette, LA 70503 USA
来源
2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS) | 2021年
关键词
EEG signals; automatic features learning; epileptic seizure prediction; variational autoencoders; supervised learning; deep learning; classification; CLASSIFICATION;
D O I
10.1109/ISCAS51556.2021.9401347
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Predicting epilepsy ahead of its occurrence has been an arduous job for scientists for a long time. Epileptic patients are still endeavoring to find a prosperous way to evade seizures to improve the quality of their lives. In this paper, we propose a novel deep learning system for epileptic seizure prediction using multi-channel electroencephalogram (EEG) recordings from the scalp of human brains. The proposed system is patient-specific and is predicated on the classification between the interictal and preictal brain states for the epileptic patient. The system uses a two-dimensional convolutional variational autoencoder and trains it once in a supervised way for automatic feature learning and classification. Within a prediction window of up to one hour, our proposed system achieved an average sensitivity of 94.45% and 0.06FP/h average false prediction rate which makes it one of the most efficient among state-of-the-art methods.
引用
收藏
页数:5
相关论文
共 28 条
  • [1] Abdelhameed A. M., 2018, 2018 IEEE INT WORKSH
  • [2] Semi-Supervised EEG Signals Classification System for Epileptic Seizure Detection
    Abdelhameed, Ahmed M.
    Bayoumi, Magdy
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (12) : 1922 - 1926
  • [3] Semi-supervised Deep Learning System for Epileptic Seizures Onset Prediction
    Abdelhameed, Ahmed M.
    Bayoumi, Magdy
    [J]. 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 1186 - 1191
  • [4] Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adeli, Hojjat
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 : 270 - 278
  • [5] Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals
    Alotaiby, Turky N.
    Alshebeili, Saleh A.
    Alotaibi, Faisal M.
    Alrshoud, Saud R.
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [6] Automatic Epileptic Seizure Detection in EEG Using Nonsubsampled Wavelet-Fourier Features
    Chen, Guangyi
    Xie, Wenfang
    Bui, Tien D.
    Krzyzak, Adam
    [J]. JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2017, 37 (01) : 123 - 131
  • [7] EEG-Based Prediction of Epileptic Seizures Using Phase Synchronization Elicited from Noise-Assisted Multivariate Empirical Mode Decomposition
    Cho, Dongrae
    Min, Beomjun
    Kim, Jongin
    Lee, Boreom
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (08) : 1309 - 1318
  • [8] Modern management of epilepsy: A practical approach
    Elger, Christian E.
    Schmidt, Dieter
    [J]. EPILEPSY & BEHAVIOR, 2008, 12 (04) : 501 - 539
  • [9] Deep learning for healthcare applications based on physiological signals: A review
    Faust, Oliver
    Hagiwara, Yuki
    Hong, Tan Jen
    Lih, Oh Shu
    Acharya, U. Rajendra
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 161 : 1 - 13
  • [10] Chaos feature study in fractional Fourier domain for preictal prediction of epileptic seizure
    Fei, Keling
    Wang, Wei
    Yang, Qiaoli
    Tang, Shusen
    [J]. NEUROCOMPUTING, 2017, 249 : 290 - 298