An Efficient Deep Learning System for Epileptic Seizure Prediction

被引:7
作者
Abdelhameed, Ahmed M. [1 ]
Bayoumi, Magdy [1 ]
机构
[1] Univ Louisiana, Dept Elect & Comp Engn, Lafayette, LA 70503 USA
来源
2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS) | 2021年
关键词
EEG signals; automatic features learning; epileptic seizure prediction; variational autoencoders; supervised learning; deep learning; classification; CLASSIFICATION;
D O I
10.1109/ISCAS51556.2021.9401347
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Predicting epilepsy ahead of its occurrence has been an arduous job for scientists for a long time. Epileptic patients are still endeavoring to find a prosperous way to evade seizures to improve the quality of their lives. In this paper, we propose a novel deep learning system for epileptic seizure prediction using multi-channel electroencephalogram (EEG) recordings from the scalp of human brains. The proposed system is patient-specific and is predicated on the classification between the interictal and preictal brain states for the epileptic patient. The system uses a two-dimensional convolutional variational autoencoder and trains it once in a supervised way for automatic feature learning and classification. Within a prediction window of up to one hour, our proposed system achieved an average sensitivity of 94.45% and 0.06FP/h average false prediction rate which makes it one of the most efficient among state-of-the-art methods.
引用
收藏
页数:5
相关论文
共 28 条
[1]  
Abdelhameed A. M., 2018, 2018 IEEE INT WORKSH
[2]   Semi-Supervised EEG Signals Classification System for Epileptic Seizure Detection [J].
Abdelhameed, Ahmed M. ;
Bayoumi, Magdy .
IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (12) :1922-1926
[3]   Semi-supervised Deep Learning System for Epileptic Seizures Onset Prediction [J].
Abdelhameed, Ahmed M. ;
Bayoumi, Magdy .
2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, :1186-1191
[4]   Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 :270-278
[5]   Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals [J].
Alotaiby, Turky N. ;
Alshebeili, Saleh A. ;
Alotaibi, Faisal M. ;
Alrshoud, Saud R. .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
[6]   Automatic Epileptic Seizure Detection in EEG Using Nonsubsampled Wavelet-Fourier Features [J].
Chen, Guangyi ;
Xie, Wenfang ;
Bui, Tien D. ;
Krzyzak, Adam .
JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2017, 37 (01) :123-131
[7]   EEG-Based Prediction of Epileptic Seizures Using Phase Synchronization Elicited from Noise-Assisted Multivariate Empirical Mode Decomposition [J].
Cho, Dongrae ;
Min, Beomjun ;
Kim, Jongin ;
Lee, Boreom .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (08) :1309-1318
[8]   Modern management of epilepsy: A practical approach [J].
Elger, Christian E. ;
Schmidt, Dieter .
EPILEPSY & BEHAVIOR, 2008, 12 (04) :501-539
[9]   Deep learning for healthcare applications based on physiological signals: A review [J].
Faust, Oliver ;
Hagiwara, Yuki ;
Hong, Tan Jen ;
Lih, Oh Shu ;
Acharya, U. Rajendra .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 161 :1-13
[10]   Chaos feature study in fractional Fourier domain for preictal prediction of epileptic seizure [J].
Fei, Keling ;
Wang, Wei ;
Yang, Qiaoli ;
Tang, Shusen .
NEUROCOMPUTING, 2017, 249 :290-298