Local Existence of Weak Solutions to Kinetic Models of Granular Media

被引:7
作者
Agueh, Martial [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, STN CSC, POB 1700, Victoria, BC V8W 2Y2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
AGGREGATION; EQUATION;
D O I
10.1007/s00205-016-0975-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove in any dimension a local in time existence of weak solutions to the Cauchy problem for the kinetic equation of granular media, partial derivative(t) f + v. del(x) f = div(v) [f (del W *(v) f)] when the initial data are nonnegative, integrable and bounded functions with compact support in velocity, and the interaction potential is a radially symmetric convex function. Our proof is constructive and relies on a splitting argument in position and velocity, where the spatially homogeneous equation is interpreted as the gradient flow of a convex interaction energy with respect to the quadratic Wasserstein distance. Our result generalizes the local existence result obtained by Benedetto et al. (RAIRO Mod,l Math Anal Num,r 31(5):615-641, 1997) on the one-dimensional model of this equation for a cubic power-law interaction potential.
引用
收藏
页码:917 / 959
页数:43
相关论文
共 26 条
  • [1] Ambrosio L., 2005, LECT MATH
  • [2] Benedetto D, 1997, ESAIM-MATH MODEL NUM, V31, P615
  • [3] Benedetto D., 1999, M2AN MATH MODEL NUME, V33, P439
  • [4] ONE-DIMENSIONAL BOUNCE OF INELASTICALLY COLLIDING MARBLES ON A WALL
    BERNU, B
    MAZIGHI, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (24): : 5745 - 5754
  • [5] Lp Theory for the Multidimensional Aggregation Equation
    Bertozzi, Andrea L.
    Laurent, Thomas
    Rosado, Jesus
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (01) : 45 - 83
  • [6] PRECISED LP REGULARITY OF THE MEANS IN TRANSPORT-EQUATIONS
    BEZARD, M
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (01): : 29 - 76
  • [7] BOUCHUT F, 2000, SERIES APPL MATH, V4
  • [8] BRENIER Y, 1987, CR ACAD SCI I-MATH, V305, P805
  • [9] Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric
    Carlen, EA
    Gangbo, W
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 172 (01) : 21 - 64
  • [10] GLOBAL-IN-TIME WEAK MEASURE SOLUTIONS AND FINITE-TIME AGGREGATION FOR NONLOCAL INTERACTION EQUATIONS
    Carrillo, J. A.
    Difrancesco, M.
    Figalli, A.
    Laurent, T.
    Slepcev, D.
    [J]. DUKE MATHEMATICAL JOURNAL, 2011, 156 (02) : 229 - 271