Comparing COVID-19 risk factors in Brazil using machine learning: the importance of socioeconomic, demographic and structural factors

被引:25
作者
Baqui, Pedro [1 ]
Marra, Valerio [1 ,2 ]
Alaa, Ahmed M. [3 ]
Bica, Ioana [4 ,5 ]
Ercole, Ari [6 ,7 ]
van der Schaar, Mihaela [3 ,5 ,7 ,8 ,9 ]
机构
[1] Univ Fed Espirito Santo, Nucleo Astrofis & Cosmol, Vitoria, ES, Brazil
[2] Univ Fed Espirito Santo, Dept Fis, Vitoria, ES, Brazil
[3] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[4] Univ Oxford, Dept Engn Sci, Oxford, England
[5] Alan Turing Inst, London, England
[6] Univ Cambridge, Dept Med, Cambridge, England
[7] Cambridge Ctr Artificial Intelligence Med, Cambridge, England
[8] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England
[9] Univ Cambridge, Dept Populat Hlth, Cambridge, England
关键词
D O I
10.1038/s41598-021-95004-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The COVID-19 pandemic continues to have a devastating impact on Brazil. Brazil's social, health and economic crises are aggravated by strong societal inequities and persisting political disarray. This complex scenario motivates careful study of the clinical, socioeconomic, demographic and structural factors contributing to increased risk of mortality from SARS-CoV-2 in Brazil specifically. We consider the Brazilian SIVEP-Gripe catalog, a very rich respiratory infection dataset which allows us to estimate the importance of several non-laboratorial and socio-geographic factors on COVID-19 mortality. We analyze the catalog using machine learning algorithms to account for likely complex interdependence between metrics. The XGBoost algorithm achieved excellent performance, producing an AUC-ROC of 0.813 (95% CI 0.810-0.817), and outperforming logistic regression. Using our model we found that, in Brazil, socioeconomic, geographical and structural factors are more important than individual comorbidities. Particularly important factors were: The state of residence and its development index; the distance to the hospital (especially for rural and less developed areas); the level of education; hospital funding model and strain. Ethnicity is also confirmed to be more important than comorbidities but less than the aforementioned factors. In conclusion, socioeconomic and structural factors are as important as biological factors in determining the outcome of COVID-19. This has important consequences for policy making, especially on vaccination/non-pharmacological preventative measures, hospital management and healthcare network organization.
引用
收藏
页数:10
相关论文
共 27 条
[1]  
Associacao de Medicina Intensiva Brasileira (Brazilian Intensive Care Association), 2020, AMIB APR DAD AT LEIT
[2]   Ethnic and regional variations in hospital mortality from COVID-19 in Brazil: a cross-sectional observational study [J].
Baqui, Pedro ;
Bica, Ioana ;
Marra, Valerio ;
Ercole, Ari ;
van der Schaar, Mihaela .
LANCET GLOBAL HEALTH, 2020, 8 (08) :1018-1026
[3]   Political and institutional perils of Brazil's COVID-19 crisis [J].
Barberia, Lorena G. ;
Gomez, Eduardo J. .
LANCET, 2020, 396 (10248) :367-368
[4]   Association of Intensive Care Unit Patient Load and Demand With Mortality Rates in US Department of Veterans Affairs Hospitals During the COVID-19 Pandemic [J].
Bravata, Dawn M. ;
Perkins, Anthony J. ;
Myers, Laura J. ;
Arling, Greg ;
Zhang, Ying ;
Zillich, Alan J. ;
Reese, Lindsey ;
Dysangco, Andrew ;
Agarwal, Rajiv ;
Myers, Jennifer ;
Austin, Charles ;
Sexson, Ali ;
Leonard, Samuel J. ;
Dev, Sharmistha ;
Keyhani, Salomeh .
JAMA NETWORK OPEN, 2021, 4 (01)
[5]   Maximising benefit, reducing inequalities and ensuring deliverability: Prioritisation of COVID-19 vaccination in the UK [J].
Campos-Matos, Ines ;
Mandal, Sema ;
Yates, Julie ;
Ramsay, Mary ;
Wilson, James ;
Lim, Wei Shen .
LANCET REGIONAL HEALTH-EUROPE, 2021, 2
[6]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[7]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1186/s12916-014-0241-z, 10.7326/M14-0698, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0697, 10.1016/j.eururo.2014.11.025, 10.1002/bjs.9736, 10.1038/bjc.2014.639, 10.1136/bmj.g7594, 10.1111/eci.12376]
[8]  
deCarvalho T., 2018, SAUDE PUBLICA PANORA
[9]   Features of 20133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study [J].
Docherty, Annemarie B. ;
Harrison, Ewen M. ;
Green, Christopher A. ;
Hardwick, Hayley E. ;
Pius, Riinu ;
Norman, Lisa ;
Holden, Karl A. ;
Read, Jonathan M. ;
Dondelinger, Frank ;
Carson, Gail ;
Merson, Laura ;
Lee, James ;
Plotkin, Daniel ;
Sigfrid, Louise ;
Halpin, Sophie ;
Jackson, Clare ;
Gamble, Carrol ;
Horby, Peter W. ;
Nguyen-Van-Tam, Jonathan S. ;
Ho, Antonia ;
Russell, Clark D. ;
Dunning, Jake ;
Openshaw, Peter Jm ;
Baillie, J. Kenneth ;
Semple, Malcolm G. .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 369
[10]   Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy [J].
Grasselli, Giacomo ;
Zangrillo, Alberto ;
Zanella, Alberto ;
Antonelli, Massimo ;
Cabrini, Luca ;
Castelli, Antonio ;
Cereda, Danilo ;
Coluccello, Antonio ;
Foti, Giuseppe ;
Fumagalli, Roberto ;
Iotti, Giorgio ;
Latronico, Nicola ;
Lorini, Luca ;
Merler, Stefano ;
Natalini, Giuseppe ;
Piatti, Alessandra ;
Ranieri, Marco Vito ;
Scandroglio, Anna Mara ;
Storti, Enrico ;
Cecconi, Maurizio ;
Pesenti, Antonio .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (16) :1574-1581