Ill-Posedness of the Hydrostatic Euler and Singular Vlasov Equations

被引:38
作者
Han-Kwan, Daniel [1 ]
Nguyen, Toan T. [2 ]
机构
[1] Univ Paris Saclay, CNRS, Ecole Polytech, CMLS, F-91128 Palaiseau, France
[2] Penn State Univ, Dept Math, State Coll, PA 16802 USA
关键词
QUASI-NEUTRAL LIMIT; POISSON SYSTEM; PRANDTL EQUATION; LOCAL EXISTENCE; WELL-POSEDNESS; CAUCHY-PROBLEM; INSTABILITY; DERIVATION; ISSUES; DOMAIN;
D O I
10.1007/s00205-016-0985-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop an abstract framework to establish ill-posedness, in the sense of Hadamard, for some nonlocal PDEs displaying unbounded unstable spectra. We apply this to prove the ill-posedness for the hydrostatic Euler equations as well as for the kinetic incompressible Euler equations and the Vlasov-Dirac-Benney system.
引用
收藏
页码:1317 / 1344
页数:28
相关论文
共 43 条
[1]  
Bardos C., 2012, Seminaire Laurent Schwartz-EDP et applications, V15, P21
[2]   THE CAUCHY PROBLEM FOR THE VLASOV-DIRAC-BENNEY EQUATION AND RELATED ISSUES IN FLUID MECHANICS AND SEMI-CLASSICAL LIMITS [J].
Bardos, Claude ;
Besse, Nicolas .
KINETIC AND RELATED MODELS, 2013, 6 (04) :893-917
[3]   A Vlasov equation with Dirac potential used in fusion plasmas [J].
Bardos, Claude ;
Nouri, Anne .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (11)
[4]   Ill-posedness of nonlocal Burgers equations [J].
Benzoni-Gavage, Sylvie ;
Coulombel, Jean-Francois ;
Tzvetkov, Nikolay .
ADVANCES IN MATHEMATICS, 2011, 227 (06) :2220-2240
[5]   Local Existence of Analytical Solutions to an Incompressible Lagrangian Stochastic Model in a Periodic Domain [J].
Bossy, Mireille ;
Fontbona, Joaquin ;
Jabin, Pierre-Emmanuel ;
Jabir, Jean-Francois .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (07) :1141-1182
[6]   Remarks on the derivation of the hydrostatic Euler equations [J].
Brenier, Y .
BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (07) :585-595
[7]   Convergence of the Vlasov-Poisson system to the incompressible Euler equations [J].
Brenier, Y .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (3-4) :737-754
[8]   A homogenized model for vortex sheets [J].
Brenier, Y .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (04) :319-353
[9]   Homogeneous hydrostatic flows with convex velocity profiles [J].
Brenier, Y .
NONLINEARITY, 1999, 12 (03) :495-512
[10]  
BRENIER Y., 1989, VLASOV POISSON TYPE