Examining the effect of explanation on satisfaction and trust in AI diagnostic systems

被引:40
作者
Alam, Lamia [1 ]
Mueller, Shane [1 ]
机构
[1] Michigan Technol Univ, Houghton, MI 49931 USA
关键词
EXPERT SYSTEM;
D O I
10.1186/s12911-021-01542-6
中图分类号
R-058 [];
学科分类号
摘要
BackgroundArtificial Intelligence has the potential to revolutionize healthcare, and it is increasingly being deployed to support and assist medical diagnosis. One potential application of AI is as the first point of contact for patients, replacing initial diagnoses prior to sending a patient to a specialist, allowing health care professionals to focus on more challenging and critical aspects of treatment. But for AI systems to succeed in this role, it will not be enough for them to merely provide accurate diagnoses and predictions. In addition, it will need to provide explanations (both to physicians and patients) about why the diagnoses are made. Without this, accurate and correct diagnoses and treatments might otherwise be ignored or rejected.MethodIt is important to evaluate the effectiveness of these explanations and understand the relative effectiveness of different kinds of explanations. In this paper, we examine this problem across two simulation experiments. For the first experiment, we tested a re-diagnosis scenario to understand the effect of local and global explanations. In a second simulation experiment, we implemented different forms of explanation in a similar diagnosis scenario.ResultsResults show that explanation helps improve satisfaction measures during the critical re-diagnosis period but had little effect before re-diagnosis (when initial treatment was taking place) or after (when an alternate diagnosis resolved the case successfully). Furthermore, initial "global" explanations about the process had no impact on immediate satisfaction but improved later judgments of understanding about the AI. Results of the second experiment show that visual and example-based explanations integrated with rationales had a significantly better impact on patient satisfaction and trust than no explanations, or with text-based rationales alone. As in Experiment 1, these explanations had their effect primarily on immediate measures of satisfaction during the re-diagnosis crisis, with little advantage prior to re-diagnosis or once the diagnosis was successfully resolved.ConclusionThese two studies help us to draw several conclusions about how patient-facing explanatory diagnostic systems may succeed or fail. Based on these studies and the review of the literature, we will provide some design recommendations for the explanations offered for AI systems in the healthcare domain.
引用
收藏
页数:15
相关论文
共 67 条
[1]  
Ada Health GmbH, ADA 3101 2021 APP
[2]  
Adlassnig K.-P., 1989, Artificial Intelligence in Medicine, V1, P71, DOI 10.1016/0933-3657(89)90018-3
[3]  
Alam L, 2020, Investigating the impact of explanation on repairing trust in ai diagnostic systems for re-diagnosis
[4]   Explainability for artificial intelligence in healthcare: a multidisciplinary perspective [J].
Amann, Julia ;
Blasimme, Alessandro ;
Vayena, Effy ;
Frey, Dietmar ;
Madai, Vince I. .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (01)
[5]  
[Anonymous], 2017, HARV JL TECH
[6]  
[Anonymous], 2017, ARXIV171209923
[7]  
[Anonymous], FORBES
[8]   AI Chatbot Design during an Epidemic like the Novel Coronavirus [J].
Battineni, Gopi ;
Chintalapudi, Nalini ;
Amenta, Francesco .
HEALTHCARE, 2020, 8 (02)
[9]   EXPLANATION AND VERBALIZATION IN A COMPUTER-ASSISTED SEARCH TASK [J].
BERRY, DC ;
BROADBENT, DE .
QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY SECTION A-HUMAN EXPERIMENTAL PSYCHOLOGY, 1987, 39 (04) :585-609
[10]  
Che Zhengping, 2016, AMIA Annu Symp Proc, V2016, P371