Novel control of quantum harmonic oscillator system

被引:0
作者
Jiang, Andy M. [1 ]
Moskowitz, Mosheh T. [1 ]
Newcomb, Robert W. [1 ]
机构
[1] Univ Maryland, Dept Elect Engn, Microsyst Labs, College Pk, MD 20742 USA
来源
IEEE MWSCAS'06: PROCEEDINGS OF THE 2006 49TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, | 2006年
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study proved that a permutated matrix u(t) can effectively control a quantum harmonic oscillator, unlike a scalar function that previous studies claim. Schrodinger's equation was solved using optimal control theory to determine a control matrix u(t), which was modeled in MATLAB with Simulink to confirm its controllability based on deBroglie's relationship.
引用
收藏
页码:104 / +
页数:2
相关论文
共 50 条
  • [31] The principal measure of a quantum harmonic oscillator
    Wu, Xinxing
    Zhu, Peiyong
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (50)
  • [32] CONSTRAINED QUANTUM MECHANICAL HARMONIC OSCILLATOR
    DEAN, P
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 62 : 277 - &
  • [33] Quantum Harmonic Oscillator Systems with Disorder
    Bruno Nachtergaele
    Robert Sims
    Günter Stolz
    [J]. Journal of Statistical Physics, 2012, 149 : 969 - 1012
  • [34] Quadratic open quantum harmonic oscillator
    Ameur Dhahri
    Franco Fagnola
    Hyun Jae Yoo
    [J]. Letters in Mathematical Physics, 2020, 110 : 1759 - 1782
  • [35] Quantum decoherence of the damped harmonic oscillator
    Isar, A.
    [J]. OPTICS AND SPECTROSCOPY, 2007, 103 (02) : 252 - 257
  • [36] Relativistic Generalizations of the Quantum Harmonic Oscillator
    Poszwa, A.
    [J]. ACTA PHYSICA POLONICA A, 2014, 126 (06) : 1226 - 1234
  • [37] Revisiting the damped quantum harmonic oscillator
    Barnett, Stephen M.
    Cresser, James D.
    Croke, Sarah
    [J]. PHYSICA SCRIPTA, 2024, 99 (02)
  • [38] Finite quantum kinematics of the harmonic oscillator
    Shiri-Garakani, M
    Finkelstein, DR
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (03)
  • [39] A linear chaotic quantum harmonic oscillator
    Duan, J
    Fu, XC
    Liu, PD
    Manning, A
    [J]. APPLIED MATHEMATICS LETTERS, 1999, 12 (01) : 15 - 19
  • [40] On the moment of inertia of a quantum harmonic oscillator
    A. A. Khamzin
    A. S. Sitdikov
    A. S. Nikitin
    D. A. Roganov
    [J]. Physics of Atomic Nuclei, 2013, 76 : 457 - 463