Novel control of quantum harmonic oscillator system

被引:0
|
作者
Jiang, Andy M. [1 ]
Moskowitz, Mosheh T. [1 ]
Newcomb, Robert W. [1 ]
机构
[1] Univ Maryland, Dept Elect Engn, Microsyst Labs, College Pk, MD 20742 USA
来源
IEEE MWSCAS'06: PROCEEDINGS OF THE 2006 49TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, | 2006年
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study proved that a permutated matrix u(t) can effectively control a quantum harmonic oscillator, unlike a scalar function that previous studies claim. Schrodinger's equation was solved using optimal control theory to determine a control matrix u(t), which was modeled in MATLAB with Simulink to confirm its controllability based on deBroglie's relationship.
引用
收藏
页码:104 / +
页数:2
相关论文
共 50 条
  • [1] Quantum noise of a harmonic oscillator under classical feedback control
    汤丰
    赵楠
    Chinese Physics B, 2020, (09) : 246 - 250
  • [2] Quantum noise of a harmonic oscillator under classical feedback control*
    Tang, Feng
    Zhao, Nan
    CHINESE PHYSICS B, 2020, 29 (09)
  • [3] Quantum Harmonic Oscillator State Control in a Squeezed Fock Basis
    Kienzler, D.
    Lo, H. -Y.
    Negnevitsky, V.
    Fluhmann, C.
    Marinelli, M.
    Home, J. P.
    PHYSICAL REVIEW LETTERS, 2017, 119 (03)
  • [4] Hemispheroidal quantum harmonic oscillator
    Poenaru, D. N.
    Gherghescu, R. A.
    Solov'yov, A. V.
    Greiner, W.
    PHYSICS LETTERS A, 2008, 372 (33) : 5448 - 5451
  • [5] The quantum damped harmonic oscillator
    Um, CI
    Yeon, KH
    George, TF
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 362 (2-3): : 63 - 192
  • [6] Quaternionic quantum harmonic oscillator
    Sergio Giardino
    The European Physical Journal Plus, 136
  • [7] Quaternionic quantum harmonic oscillator
    Giardino, Sergio
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (01):
  • [8] Quantum harmonic oscillator fluorescence
    Boye, Daniel M.
    Cain, Laurence
    Belloni, Mario
    Friedensen, Sarah
    Pruett, Nancy
    Brooks, Henry
    FIFTEENTH CONFERENCE ON EDUCATION AND TRAINING IN OPTICS AND PHOTONICS (ETOP 2019), 2019, 11143
  • [9] Subnormality in the Quantum Harmonic Oscillator
    Franciszek Hugon Szafraniec
    Communications in Mathematical Physics, 2000, 210 : 323 - 334
  • [10] KAM for the Quantum Harmonic Oscillator
    Benoît Grébert
    Laurent Thomann
    Communications in Mathematical Physics, 2011, 307 : 383 - 427