Accelerated stability transformation method for chaos control of discrete dynamical systems

被引:3
作者
Yang, Dixiong [1 ]
Li, Xiaolan [1 ]
Chen, Guohai [1 ]
Meng, Zeng [2 ]
机构
[1] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dept Engn Mech, Int Res Ctr Computat Mech, Dalian 116023, Peoples R China
[2] Hefei Univ Technol, Sch Civil Engn, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaos control; Discrete dynamical systems; Accelerated stability transformation method; Unstable fixed points; Involutory matrix; UNSTABLE PERIODIC-ORBITS; GENERALIZED HENON MAPS; FEEDBACK-CONTROL; SYNCHRONIZATION; MODEL; HYPERCHAOS; DESIGN; DELAY;
D O I
10.1007/s11071-018-4418-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper proposes the accelerated stability transformation method (ASTM) of chaos control to enhance the efficiency of stabilizing the unstable fixed points or periodic orbits of discrete dynamical systems, with fewer iterative number than the original STM. For each step of iteration, the ASTM scheme utilizes the STM formulation twice to control the step size in the oscillation direction and relaxes greatly the step size of direction normal to the oscillation direction and thus reduces computational efforts of chaos control remarkably. Four examples of nonlinear maps including the hyperchaotic system indicate that the proposed ASTM scheme is more efficient and accurate than STM scheme for stabilizing the unstable fixed points embedded in chaotic attractor. The convergence rate of ASTM scheme is closely related to the involutory matrix C and control parameter q. Moreover, two effective selecting rules of involutory matrix C are suggested by analyzing the eigenvalues of Jacobian matrix of the discrete systems.
引用
收藏
页码:1195 / 1213
页数:19
相关论文
共 43 条
[1]   Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique [J].
Aghababa, Mohammad Pourmahmood .
NONLINEAR DYNAMICS, 2012, 69 (1-2) :247-261
[2]   Stabilizing unstable steady states using multiple delay feedback control [J].
Ahlborn, A ;
Parlitz, U .
PHYSICAL REVIEW LETTERS, 2004, 93 (26)
[3]  
[Anonymous], 1993, Chaos in Dynamical Systems
[4]   MAXIMUM HYPERCHAOS IN GENERALIZED HENON MAPS [J].
BAIER, G ;
KLEIN, M .
PHYSICS LETTERS A, 1990, 151 (6-7) :281-284
[5]   The control of chaos: theory and applications [J].
Boccaletti, S ;
Grebogi, C ;
Lai, YC ;
Mancini, H ;
Maza, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (03) :103-197
[6]   Parametric partial control of chaotic systems [J].
Capeans, Ruben ;
Sabuco, Juan ;
Sanjuan, Miguel A. F. .
NONLINEAR DYNAMICS, 2016, 86 (02) :869-876
[7]   Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature [J].
Chai, T. ;
Draxler, R. R. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (03) :1247-1250
[8]   FROM CHAOS TO ORDER - PERSPECTIVES AND METHODOLOGIES IN CONTROLLING CHAOTIC NONLINEAR DYNAMICAL SYSTEMS [J].
Chen, Guanrong ;
Dong, Xiaoning .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06) :1363-1409
[9]   Chaos synchronization between two different chaotic systems via nonlinear feedback control [J].
Chen, Heng-Hui ;
Sheu, Geeng-Jen ;
Lin, Yung-Lung ;
Chen, Chaio-Shiung .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (12) :4393-4401
[10]   Chaos control applied to heart rhythm dynamics [J].
Ferreira, Bianca Borem ;
de Paula, Aline Souza ;
Savi, Marcelo Amorim .
CHAOS SOLITONS & FRACTALS, 2011, 44 (08) :587-599