Geometric cycles with local coefficients and the cohomology of arithmetic subgroups of the exceptional group G 2

被引:1
作者
Waldner, Christoph [1 ]
机构
[1] Univ Vienna, Dept Math, A-1090 Vienna, Austria
关键词
Group cohomology; Arithmetic group; Intersection number; Exceptional group G(2); Schur functor; AUTOMORPHIC-FORMS;
D O I
10.1007/s10711-010-9516-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the cohomology of a compact locally symmetric space attached to an arithmetic subgroup of a rational form of a group of type G (2) with values in a finite dimensional irreducible representation E of G (2). By constructing suitable geometric cycles and parallel sections of the bundle we prove non-vanishing results for this cohomology. We prove all possible non-vanishing results compatible with the known vanishing theorems regarding unitary representations with non-zero cohomology in the case of the short fundamental weight of G (2). A decisive tool in our approach is a formula for the intersection numbers with local coefficients of two geometric cycles.
引用
收藏
页码:9 / 25
页数:17
相关论文
共 28 条
[11]  
Humphreys JamesE., 1981, GRADUATE TEXTS MATH, V21
[12]  
JACOBSON N, 1958, REND CIRC MAT PALERM, V7, P55, DOI DOI 10.1007/BF02854388
[13]  
Johnson Dennis, 1987, PROGR MATH, V67, P48, DOI [10.1007/978-1-4899-6664-3_3, 10.1007/978-1-4899-6664-3]
[14]  
KIM HJ, 1996, COMMUN KOREAN MATH S, V11, P391
[15]  
LI JS, 1993, COMPOS MATH, V87, P45
[16]   ON VECTOR BUNDLE VALUED HARMONIC FORMS AND AUTOMORPHIC FORMS ON SYMMETRIC RIEMANNIAN MANIFOLDS [J].
MATSUSHIMA, Y ;
MURAKAMI, S .
ANNALS OF MATHEMATICS, 1963, 78 (02) :365-&
[17]  
MILLSON J, 1980, GEOMETRY ANAL, P00103
[18]  
MILLSON J, 2004, FUND RES, P41
[19]  
Raghunathan M.S., 1972, ERGEBNISSE MATH IHRE, V68
[20]  
Rohlfs J., 1993, J. Amer. Math. Soc., V6, P755, DOI DOI 10.2307/2152782