The error of neglecting natural convection in high temperature vertical shell-and-tube latent heat thermal energy storage systems

被引:30
作者
Tehrani, S. Saeed Mostafavi [1 ]
Diarce, Gonzalo [2 ]
Taylor, Robert A. [1 ]
机构
[1] Univ New South Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
[2] Univ Basque Country UPV EHU, Escuela Ingn Bilbao, Dept Maquinas y Motores Term, ENEDI Res Grp, Rafael Moreno Pitxitxi 2, Bilbao 48013, Spain
关键词
High temperature; Latent heat; Phase change material (PCM); Natural convection; Error correlation; Shell-and-tube; PHASE-CHANGE MATERIALS; TRANSIENT-BEHAVIOR ANALYSIS; NUMERICAL-ANALYSIS; PERFORMANCE; SOLIDIFICATION; DESIGN; SIMULATION; OPTIMIZATION; PARAMETERS; PARAFFIN;
D O I
10.1016/j.solener.2018.09.048
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
There is little understanding of the relative importance of natural convection when designing latent heat thermal energy storage (LHTES) systems based on geometric parameters and/or phase change material (PCM) properties. For high temperature shell-and-tube LHTES systems, this study aims: (i) to determine the error of ignoring natural convection, and (ii) to quantify this error for different geometric parameters and PCM properties. In particular, the study defines the circumstances under which natural convection is important and the error of choosing a 'conduction-only modelling approach'. To do so, the performance of LHTES systems with nine geometric aspect ratios and three commercial PCMs (of different melting points) were analyzed by means of a validated CFD model. The results showed that the error is a function of the process under analysis (melting or solidification) and the ratio of stored/delivered energy divided by the maximum capacity of PCM (i.e. its effectiveness). Geometry also plays a critical role in the relative importance of natural convection. The study demonstrates that a specific system geometry (i.e. a dimensionless number defined based on the inner and outer radius as well as the length of shell-and-tube geometry: S = R-2 - r(0)(2)/2r(0)L) can be used to determine the relevance of natural convection. It was found that regardless of PCM type, the error is of neglecting natural congestion is small if S < 0.005. For S > 0.005, the error depends on the following non-dimensional groups: r(0)/L, Ra, Ste, and Bi. As might be expected, the Rayleigh number was found to be the most influential group. Notably, a critical Rayleigh number value (8 x 10(5)) was found, below which the error of neglecting natural convection is < 1%. Finally, two correlations were developed in order to quantify the error achieved - one for melting and another for solidification.
引用
收藏
页码:489 / 501
页数:13
相关论文
共 50 条
  • [31] Study of the melting performance of shell-and-tube latent heat thermal energy storage unit under the action of rotating finned tube
    Zheng, Zhang-Jing
    Sun, Yu
    Chen, Yang
    He, Chen
    Yin, Hang
    Xu, Yang
    JOURNAL OF ENERGY STORAGE, 2023, 62
  • [32] Effect of perforated fins on the heat-transfer performance of vertical shell-and-tube latent heat energy storage unit
    Li, Hongyang
    Hu, Chengzhi
    He, Yichuan
    Tang, Dawei
    Wang, Kuiming
    Huang, Wenguo
    JOURNAL OF ENERGY STORAGE, 2021, 39 (39):
  • [33] Experimental study on discharging performance of vertical multitube shell and tube latent heat thermal energy storage
    Raul, Appasaheb K.
    Bhavsar, Pratik
    Saha, Sandip Kumar
    JOURNAL OF ENERGY STORAGE, 2018, 20 : 279 - 288
  • [34] Numerical analysis and optimization of the charging process on a shell-and-tube latent heat thermal energy storage unit for a solar power plant with direct steam generation
    Deng, Yajun
    Zhu, Zhengyue
    Wang, Wenzhao
    Ye, Qianhao
    Yu, Bo
    Sun, Dongliang
    ENERGY SCIENCE & ENGINEERING, 2023, 11 (01) : 206 - 226
  • [35] Design and optimization of a bionic-lotus root inspired shell-and-tube latent heat thermal energy storage unit
    Gao, Long
    Deng, Yimin
    Liu, Shuang
    Ren, Fan
    Wan, Man Pun
    Yang, Lizhong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 226
  • [36] Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell and tube latent heat energy storage systems
    Karami, Ramin
    Kamkari, Babak
    ENERGY CONVERSION AND MANAGEMENT, 2020, 210
  • [37] Discharge optimization in shell-and-tube latent heat storage systems using response surface methodology
    Sajadian, Seyedmojtaba
    Hosseinzadeh, Khashayar
    Akbari, Shahin
    Rahbari, Alireza
    Talebizadehsardari, Pouyan
    Keshmiri, Amir
    RESULTS IN ENGINEERING, 2025, 25
  • [38] Effects of shell modifications and operational parameters on melting uniformity of a vertical multi-section shell-and-tube latent heat thermal energy storage unit
    Chen, Lanxin
    Fan, Aiwu
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [39] Numerical Study of a Shell-and-Tube Latent Thermal Energy Storage Unit Heated by Laminar Pulsed Fluid Flow
    Elbahjaoui, Radouane
    El Qarnia, Hamid
    HEAT TRANSFER ENGINEERING, 2017, 38 (17) : 1466 - 1480
  • [40] Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments
    Roesler, Fabian
    Brueggemann, Dieter
    HEAT AND MASS TRANSFER, 2011, 47 (08) : 1027 - 1033