On the Hidden Mechanism Behind Non-uniqueness for the Anisotropic Calderon Problem with Data on Disjoint Sets

被引:10
作者
Daude, Thierry [1 ]
Kamran, Niky [2 ]
Nicoleau, Francois [3 ]
机构
[1] Univ Cergy Pontoise, Dept Math, UMR CNRS 8088, F-95302 Cergy Pontoise, France
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] UMR CNRS 6629, Lab Math Jean Leray, 2 Rue Houssiniere,BP 92208, F-44322 Nantes 03, France
来源
ANNALES HENRI POINCARE | 2019年 / 20卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
INVERSE PROBLEM; UNIQUENESS; CONDUCTIVITIES; MANIFOLDS;
D O I
10.1007/s00023-018-00755-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that there is generically non-uniqueness for the anisotropic Calderon problem at fixed frequency when the Dirichlet and Neumann data are measured on disjoint sets of the boundary of a given domain. More precisely, we first show that given a smooth compact connected Riemannian manifold with boundary (M,g) of dimension n3, there exist in the conformal class of g an infinite number of Riemannian metrics g such that their corresponding DN maps at a fixed frequency coincide when the Dirichlet data D and Neumann data N are measured on disjoint sets and satisfy DNM. The conformal factors that lead to these non-uniqueness results for the anisotropic Calderon problem satisfy a nonlinear elliptic PDE of Yamabe type on the original manifold (M,g) and are associated with a natural but subtle gauge invariance of the anisotropic Calderon problem with data on disjoint sets. We then construct a large class of counterexamples to uniqueness in dimension to the anisotropic Calderon problem at fixed frequency with data on disjoint sets and modulo this gauge invariance. This class consists in cylindrical Riemannian manifolds with boundary having two ends (meaning that the boundary has two connected components), equipped with a suitably chosen warped product metric.
引用
收藏
页码:859 / 887
页数:29
相关论文
共 42 条
[1]  
[Anonymous], 1973, LECT NOTES MATH
[2]   Calderon's inverse problem for anisotropic conductivity in the plane [J].
Astala, K ;
Päivärinta, L ;
Lassas, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) :207-224
[3]   A proof of the local Borg-Marchenko theorem [J].
Bennewitz, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 218 (01) :131-132
[5]  
Borg G., 1952, Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, P276
[6]  
Daude T., 2015, ANN I FOURIER
[7]  
Daude T., 2018, Harv. Univ. Cent. Math. Sci. Appl. Ser. Math., V2, P77
[8]  
Eckhardt J, 2013, T AM MATH SOC, V365, P3923
[9]   The Calderon problem in transversally anisotropic geometries [J].
Ferreira, David Dos Santos ;
Kurylev, Yaroslav ;
Lassas, Matti ;
Salo, Mikko .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (11) :2579-2626
[10]   Limiting Carleman weights and anisotropic inverse problems [J].
Ferreira, David Dos Santos ;
Kenig, Carlos E. ;
Salo, Mikko ;
Uhlmann, Gunther .
INVENTIONES MATHEMATICAE, 2009, 178 (01) :119-171