The place of the adjoint representation in the Kronecker square of irreducible representations of simple Lie groups

被引:5
作者
King, RC [1 ]
Wybourne, BG [1 ]
机构
[1] UNIWERSYTET MIKOLAJA KOPERNIKA,INST FIZ,PL-87100 TORUN,POLAND
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 16期
关键词
D O I
10.1088/0305-4470/29/16/026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The multiplicity of occurrence of the adjoint representation in the decomposition of the square of any finite-dimensional irreducible representation lambda of any compact simple Lie group is shown to be equal to the number of non-vanishing components of the Dynkin label of lambda. The resolution of this multiplicity into contributions to the symmetric and antisymmetric squares of lambda is discussed, with complete results being found for all of the classical and some of the exceptional simple Lie groups, and partial results culminating in conjectures for the remaining exceptional groups.
引用
收藏
页码:5059 / 5077
页数:19
相关论文
共 50 条
[21]   IRREDUCIBLE REPRESENTATIONS OF SIMPLE LIE-GROUPS WITH REGULAR ALGEBRA OF U-INVARIANTS [J].
BRION, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 293 (08) :377-379
[22]   Irreducible representations of finite exceptional groups of Lie type containing matrices with simple spectra [J].
Suprunenko, ID ;
Zalesskii, AE .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (04) :1789-1833
[23]   A homotopy construction of the adjoint representation for Lie groups [J].
Castellana, N ;
Kitchloo, N .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 133 :399-409
[24]   Symplectic connections on the fiberings of regular orbits under the adjoint representations of simple Lie groups [J].
Shmelev, AS .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1996, 30 (01) :36-41
[25]   Conjugacy action, induced representations and the Steinberg square for simple groups of Lie type [J].
Heide, Gerhard ;
Saxl, Jan ;
Pham Huu Tiep ;
Zalesski, Alexandre E. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 106 :908-930
[26]   Survey of irreducible unitary representations of semisimple Lie groups [J].
Knapp, AW .
GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, :89-98
[27]   CLASSIFICATION OF IRREDUCIBLE TEMPERED REPRESENTATIONS OF SEMISIMPLE LIE GROUPS [J].
KNAPP, AW ;
ZUCKERMAN, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (07) :2178-2180
[28]   Irreducible representations of simple Lie algebras by differential operators [J].
A. Morozov ;
M. Reva ;
N. Tselousov ;
Y. Zenkevich .
The European Physical Journal C, 2021, 81
[29]   OPERATOR KERNELS FOR IRREDUCIBLE REPRESENTATIONS OF EXPONENTIAL LIE GROUPS [J].
Poguntke, Detlev .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 78 (02) :301-316