An Advection-Robust Hybrid High-Order Method for the Oseen Problem

被引:8
作者
Aghili, Joubine [1 ]
Di Pietro, Daniele A. [2 ]
机构
[1] Univ Cote dAzur, CNRS, Lab Jean Dieudonne, INRIA, Nice, France
[2] Univ Montpellier, CNRS, Inst Montpellierain Alexander Grothendieck, Montpellier, France
关键词
Hybrid high-order methods; Oseen equations; Incompressible flows; Polyhedral meshes; Advection-robust error estimates; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT-METHOD; NAVIER-STOKES EQUATIONS; CONSERVATION-LAWS; ERROR ANALYSIS; GENERAL MESHES; SKELETAL METHOD; DISCRETIZATION; APPROXIMATION; DIFFUSION;
D O I
10.1007/s10915-018-0681-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study advection-robust Hybrid High-Order discretizations of the Oseen equations. For a given integer k >= 0, the discrete velocity unknowns are vector-valued polynomials of total degree <= k on mesh elements and faces, while the pressure unknowns are discontinuous polynomials of total degree <= k on the mesh. From the discrete unknowns, three relevant quantities are reconstructed inside each element: a velocity of total degree <= (k + 1), a discrete advective derivative, and a discrete divergence. These reconstructions are used to formulate the discretizations of the viscous, advective, and velocity-pressure coupling terms, respectively. Well-posedness is ensured through appropriate high-order stabilization terms. We prove energy error estimates that are advection-robust for the velocity, and show that each mesh element T of diameter h(T) contributes to the discretization error with anO(h(T)(k+1))-term in the diffusion-dominated regime, anO(h(T)(k+1/2))-term in the advection-dominated regime, and scales with intermediate powers of hT in between. Numerical results complete the exposition.
引用
收藏
页码:1310 / 1338
页数:29
相关论文
共 65 条
[1]   Hybridization of Mixed High-Order Methods on General Meshes and Application to the Stokes Equations [J].
Aghili, Joubine ;
Boyaval, Sebastien ;
Di Pietro, Daniele A. .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2015, 15 (02) :111-134
[2]   Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity [J].
Badia, S. ;
Codina, R. ;
Gudi, T. ;
Guzman, J. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) :800-819
[3]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[4]   An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations [J].
Bassi, F. ;
Crivellini, A. ;
Di Pietro, D. A. ;
Rebay, S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (02) :794-815
[5]   On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations [J].
Bassi, F. ;
Botti, L. ;
Colombo, A. ;
Di Pietro, D. A. ;
Tesini, P. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (01) :45-65
[6]   An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows [J].
Bassi, Francesco ;
Crivellini, Andrea ;
Di Pietro, Daniele A. ;
Rebay, Stefano .
COMPUTERS & FLUIDS, 2007, 36 (10) :1529-1546
[7]   Connections between discontinuous Galerkin and nonconforming finite element methods for the Stokes equations [J].
Becker, Roland ;
Capatina, Daniela ;
Joie, Julie .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (03) :1013-1041
[8]  
Boffi D., 2013, Springer Ser. Comput. Math
[9]   UNIFIED FORMULATION AND ANALYSIS OF MIXED AND PRIMAL DISCONTINUOUS SKELETAL METHODS ON POLYTOPAL MESHES [J].
Boffi, Daniele ;
Di Pietro, Daniele A. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (01) :1-28
[10]   A HYBRID HIGH-ORDER METHOD FOR NONLINEAR ELASTICITY [J].
Botti, Michele ;
Di Pietro, Daniele A. ;
Sochala, Pierre .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) :2687-2717