Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries

被引:1816
作者
Liu, Wen [1 ,2 ]
Oh, Pilgun [1 ,2 ]
Liu, Xien [1 ,2 ]
Lee, Min-Joon [1 ,2 ]
Cho, Woongrae [1 ,2 ]
Chae, Sujong [1 ,2 ]
Kim, Youngsik [1 ,2 ]
Cho, Jaephil [1 ,2 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Energy Engn, Ulsan 689798, South Korea
[2] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Ulsan 689798, South Korea
关键词
cation mixing; layered structure; lithium-ion batteries; nickel; surface reactions; POSITIVE ELECTRODE MATERIAL; X-RAY-DIFFRACTION; LINI0.8CO0.15AL0.05O2 CATHODE MATERIALS; ELECTROCHEMICAL PROPERTIES; LINI0.8CO0.2O2; CATHODE; THERMAL-STABILITY; CYCLING PERFORMANCE; CONCENTRATION-GRADIENT; SURFACE MODIFICATIONS; CAPACITY FADE;
D O I
10.1002/anie.201409262
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High energy-density lithium-ion batteries are in demand for portable electronic devices and electrical vehicles. Since the energy density of the batteries relies heavily on the cathode material used, major research efforts have been made to develop alternative cathode materials with a higher degree of lithium utilization and specific energy density. In particular, layered, Ni-rich, lithium transition-metal oxides can deliver higher capacity at lower cost than the conventional LiCoO2. However, for these Ni-rich compounds there are still several problems associated with their cycle life, thermal stability, and safety. Herein the performance enhancement of Ni-rich cathode materials through structure tuning or interface engineering is summarized. The underlying mechanisms and remaining challenges will also be discussed.
引用
收藏
页码:4440 / 4457
页数:18
相关论文
共 173 条
[11]   Lithium insertion into host materials: the key to success for Li ion batteries [J].
Broussely, M ;
Biensan, P ;
Simon, B .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :3-22
[12]   Probing Li-Ni Cation Disorder in Li1-xNi1+x-yAlyO2 Cathode Materials by Neutron Diffraction [J].
Cai, Lu ;
Liu, Zengcai ;
An, Ke ;
Liang, Chengdu .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (07) :A924-A928
[13]   Application of first-principles calculations to the design of rechargeable Li-batteries [J].
Ceder, G ;
Aydinol, MK ;
Kohan, AF .
COMPUTATIONAL MATERIALS SCIENCE, 1997, 8 (1-2) :161-169
[14]   Divalent cation incorporated Li(1+x)MMgxO2(1+x) (M = Ni0.75Co0.25):: viable cathode materials for rechargeable lithium-ion batteries [J].
Chang, CC ;
Kim, JY ;
Kumta, PN .
JOURNAL OF POWER SOURCES, 2000, 89 (01) :56-63
[15]   Synthesis and electrochemical characterization of LiMO2 (M = Ni, Ni0.75Co0.25) for rechargeable lithium ion batteries [J].
Chang, CC ;
Scarr, N ;
Kumta, PN .
SOLID STATE IONICS, 1998, 112 (3-4) :329-344
[16]   Synthesis and electrochemical characterization of divalent cation-incorporated lithium nickel oxide [J].
Chang, CC ;
Kim, JY ;
Kumta, PN .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (05) :1722-1729
[17]   Thermodynamic description of the LiNiO2-NiO2 pseudo-binary system and extrapolation to the Li(Co, Ni)O2-(Co, Ni)O2 system [J].
Chang, Keke ;
Hallstedt, Bengt ;
Music, Denis .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2012, 37 :100-107
[18]   Comparison of the chemical stability of Li1-xCoO2 and Li1-xNi0.85Co0.15O2 cathodes [J].
Chebiam, RV ;
Prado, F ;
Manthiram, A .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 163 (01) :5-9
[19]   Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries [J].
Chen, CH ;
Liu, J ;
Amine, K .
JOURNAL OF POWER SOURCES, 2001, 96 (02) :321-328
[20]   DIRECT DIFFERENTIATION OF SURFACE AND BULK COMPOSITIONS OF POWDER CATALYSTS - APPLICATION OF ELECTRON-YIELD AND FLUORESCENCE-YIELD NEXAFS TO LIXNI1-XO [J].
CHEN, JG ;
DEVRIES, BD ;
LEWANDOWSKI, JT ;
HALL, RB .
CATALYSIS LETTERS, 1994, 23 (1-2) :25-35