Hydrodynamics of operator spreading and quasiparticle diffusion in interacting integrable systems

被引:176
作者
Gopalakrishnan, Sarang [1 ,2 ,3 ]
Huse, David A. [4 ]
Khemani, Vedika [5 ]
Vasseur, Romain [6 ]
机构
[1] CUNY Coll Staten Isl, Dept Phys & Astron, Staten Isl, NY 10314 USA
[2] CUNY, Grad Ctr, Phys Program, New York, NY 10016 USA
[3] CUNY, Grad Ctr, Initiat Theoret Sci, New York, NY 10016 USA
[4] Princeton Univ, Phys Dept, Princeton, NJ 08544 USA
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[6] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
DYNAMICS;
D O I
10.1103/PhysRevB.98.220303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We address the hydrodynamics of operator spreading in interacting integrable lattice models. In these models, operators spread through the ballistic propagation of quasiparticles, with an operator front whose velocity is locally set by the fastest quasiparticle velocity. In interacting integrable systems, this velocity depends on the density of the other quasiparticles, so equilibrium density fluctuations cause the front to follow a biased random walk, and therefore to broaden diffusively. Ballistic front propagation and diffusive front broadening are also generically present in nonintegrable systems in one dimension; thus, although the mechanisms for operator spreading are distinct in the two cases, these coarse-grained measures of the operator front do not distinguish between the two cases. We present an expression for the front-broadening rate; we explicitly derive this for a particular integrable model (the "Floquet-Fredrickson-Andersen" model), and argue on kinetic grounds that it should apply generally. Our results elucidate the microscopic mechanism for diffusive corrections to ballistic transport in interacting integrable models.
引用
收藏
页数:6
相关论文
共 67 条
[1]   Entanglement and thermodynamics after a quantum quench in integrable systems [J].
Alba, Vincenzo ;
Calabrese, Pasquale .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (30) :7947-7951
[2]  
[Anonymous], ARXIV180200801
[3]   Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents [J].
Bertini, Bruno ;
Collura, Mario ;
De Nardis, Jacopo ;
Fagotti, Maurizio .
PHYSICAL REVIEW LETTERS, 2016, 117 (20)
[4]   ON 2 INTEGRABLE CELLULAR-AUTOMATA [J].
BOBENKO, A ;
BORDEMANN, M ;
GUNN, C ;
PINKALL, U .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 158 (01) :127-134
[5]   Scrambling and thermalization in a diffusive quantum many-body system [J].
Bohrdt, A. ;
Mendl, C. B. ;
Endres, M. ;
Knap, M. .
NEW JOURNAL OF PHYSICS, 2017, 19
[6]   "Light-Cone" Dynamics After Quantum Quenches in Spin Chains [J].
Bonnes, Lars ;
Essler, Fabian H. L. ;
Lauchli, Andreas M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (18)
[7]  
Brown W., ARXIV12106644
[8]   Bethe-Boltzmann hydrodynamics and spin transport in the XXZ chain [J].
Bulchandani, Vir B. ;
Vasseur, Romain ;
Karrasch, Christoph ;
Moore, Joel E. .
PHYSICAL REVIEW B, 2018, 97 (04)
[9]   Solvable Hydrodynamics of Quantum Integrable Systems [J].
Bulchandani, Vir B. ;
Vasseur, Romain ;
Karrasch, Christoph ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2017, 119 (22)
[10]   On classical integrability of the hydrodynamics of quantum integrable systems [J].
Bulchandani, Vir B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (43)