A review in radiomics: Making personalized medicine a reality via routine imaging

被引:199
作者
Guiot, Julien [1 ]
Vaidyanathan, Akshayaa [2 ,3 ]
Deprez, Louis
Zerka, Fadila [2 ,3 ]
Danthine, Denis [4 ]
Frix, Anne-Noelle [1 ]
Lambin, Philippe [3 ]
Bottari, Fabio [2 ]
Tsoutzidis, Nathan [2 ]
Miraglio, Benjamin [2 ]
Walsh, Sean [2 ]
Vos, Wim [2 ]
Hustinx, Roland [5 ,6 ]
Ferreira, Marta [6 ]
Lovinfosse, Pierre [5 ]
Leijenaar, Ralph T. H. [2 ]
机构
[1] Univ Hosp Liege, Dept Pneumol, Liege, Belgium
[2] Radi Oncoradi SA, Liege, Belgium
[3] Maastricht Univ, D Lab, Dept Precis Med, Dept Nucl Med,GROW Sch Oncol, Maastricht, Netherlands
[4] Univ Hosp Liege, Dept Radiol, Liege, Belgium
[5] Univ Hosp Liege, Dept Nucl Med & Oncol Imaging, Liege, Belgium
[6] Univ Liege, GIGA CRC Vivo Imaging, Liege, Belgium
基金
欧洲研究理事会;
关键词
artificial intelligence; deep learning; machine learning; personalized medicine; radiomics; LEARNING HEALTH-CARE; DECISION-SUPPORT-SYSTEMS; COMPUTED-TOMOGRAPHY; RADIOTHERAPY RESEARCH; FEDERATED DATABASES; SURVIVAL PREDICTION; CANCER PATIENTS; PET RADIOMICS; LUNG-CANCER; CHEST CT;
D O I
10.1002/med.21846
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Radiomics is the quantitative analysis of standard-of-care medical imaging; the information obtained can be applied within clinical decision support systems to create diagnostic, prognostic, and/or predictive models. Radiomics analysis can be performed by extracting hand-crafted radiomics features or via deep learning algorithms. Radiomics has evolved tremendously in the last decade, becoming a bridge between imaging and precision medicine. Radiomics exploits sophisticated image analysis tools coupled with statistical elaboration to extract the wealth of information hidden inside medical images, such as computed tomography (CT), magnetic resonance (MR), and/or Positron emission tomography (PET) scans, routinely performed in the everyday clinical practice. Many efforts have been devoted in recent years to the standardization and validation of radiomics approaches, to demonstrate their usefulness and robustness beyond any reasonable doubts. However, the booming of publications and commercial applications of radiomics approaches warrant caution and proper understanding of all the factors involved to avoid "scientific pollution" and overly enthusiastic claims by researchers and clinicians alike. For these reasons the present review aims to be a guidebook of sorts, describing the process of radiomics, its pitfalls, challenges, and opportunities, along with its ability to improve clinical decision-making, from oncology and respiratory medicine to pharmacological and genotyping studies.
引用
收藏
页码:426 / 440
页数:15
相关论文
共 129 条
[41]   External validation of radiomics-based predictive models in low-dose CT screening for early lung cancer diagnosis [J].
Garau, Noemi ;
Paganelli, Chiara ;
Summers, Paul ;
Choi, Wookjin ;
Alam, Sadegh ;
Lu, Wei ;
Fanciullo, Cristiana ;
Bellomi, Massimo ;
Baroni, Guido ;
Rampinelli, Cristiano .
MEDICAL PHYSICS, 2020, 47 (09) :4125-4136
[42]   Quantitative Imaging in Cancer Evolution and Ecology [J].
Gatenby, Robert A. ;
Grove, Olya ;
Gillies, Robert J. .
RADIOLOGY, 2013, 269 (01) :8-15
[43]   Bridging the gap between micro- and macro-scales in medical imaging with textural analysis - A biological basis for CT radiomics classifiers? [J].
Geady, C. ;
Keller, H. ;
Siddiqui, I ;
Bilkey, J. ;
Dhani, N. C. ;
Jaffray, D. A. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 72 :142-151
[44]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[45]   Radiomics and Machine Learning for Radiotherapy in Head and Neck Cancers [J].
Giraud, Paul ;
Giraud, Philippe ;
Gasnier, Anne ;
El Ayachy, Radouane ;
Kreps, Sarah ;
Foy, Jean-Philippe ;
Durdux, Catherine ;
Huguet, Florence ;
Burgun, Anita ;
Bibault, Jean-Emmanuel .
FRONTIERS IN ONCOLOGY, 2019, 9
[46]   Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: A systematic review [J].
Granzier, R. W. Y. ;
van Nijnatten, T. J. A. ;
Woodruff, H. C. ;
Smidt, M. L. ;
Lobbes, M. B., I .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 121
[47]   The Impact of Optimal Respiratory Gating and Image Noise on Evaluation of Intratumor Heterogeneity on 18F-FDG PET Imaging of Lung Cancer [J].
Grootjans, Willem ;
Tixier, Florent ;
van der Vos, Charlotte S. ;
Vriens, Dennis ;
Le Rest, Catherine C. ;
Bussink, Johan ;
Oyen, Wim J. G. ;
de Geus-Oei, Lioe-Fee ;
Visvikis, Dimitris ;
Visser, Eric P. .
JOURNAL OF NUCLEAR MEDICINE, 2016, 57 (11) :1692-1698
[48]  
Guiot J, 2020, medRxiv, DOI [10.1101/2020.04.28.20082966, 10.1101/2020.04.28.20082966, DOI 10.1101/2020.04.28.20082966]
[49]   Characterization of PET/CT images using texture analysis: the past, the presenta... any future? [J].
Hatt, Mathieu ;
Tixier, Florent ;
Pierce, Larry ;
Kinahan, Paul E. ;
Le Rest, Catherine Cheze ;
Visvikis, Dimitris .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 (01) :151-165
[50]   Radiomics Based on Lumbar Spine Magnetic Resonance Imaging to Detect Osteoporosis [J].
He, Li ;
Liu, Zhai ;
Liu, Chunying ;
Gao, Zhimei ;
Ren, Qingyun ;
Lei, Licun ;
Ren, Jialiang .
ACADEMIC RADIOLOGY, 2021, 28 (06) :E165-E171