Clustering of settling charged particles in turbulence: theory and experiments

被引:33
|
作者
Lu, Jiang [1 ]
Nordsiek, Hansen [1 ]
Shaw, Raymond A. [1 ]
机构
[1] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
基金
美国国家科学基金会;
关键词
ISOTROPIC TURBULENCE; PREFERENTIAL CONCENTRATION; CLOUDS;
D O I
10.1088/1367-2630/12/12/123030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Atmospheric clouds, electrosprays and protoplanetary nebula (dusty plasma) contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. We have developed a theoretical description of the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions (RDFs) to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb 'terminal' speed to the turbulence dissipation velocity scale) and the settling parameter (the ratio of the gravitational terminal speed to the turbulence dissipation velocity scale). The theory is compared to measured RDFs for water particles in homogeneous, isotropic air turbulence. The RDFs are obtained from particle positions measured in three dimensions using digital holography. The measurements verify the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of 'gravity' is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Theory of charged elementary particles
    Honl, H
    ANNALEN DER PHYSIK, 1937, 28 (08) : 0721 - 0760
  • [42] Dispersion and clustering of bidisperse particles in isotropic turbulence
    V. M. Alipchenkov
    L. I. Zaichik
    Fluid Dynamics, 2005, 40 : 83 - 94
  • [43] Dispersion and Clustering of Bidisperse Particles in Isotropic Turbulence
    Alipchenkov, V. M.
    Zaichik, L. I.
    FLUID DYNAMICS, 2005, 40 (01) : 83 - 94
  • [44] Anisotropic Clustering of Inertial Particles in Shear Turbulence
    Gualtieri, P.
    Picano, F.
    Casciola, C. M.
    PROGRESS IN TURBULENCE III, 2010, 131 : 167 - 170
  • [45] Clustering of finite-size particles in turbulence
    Fiabane, L.
    Zimmermann, R.
    Volk, R.
    Pinton, J. -F.
    Bourgoin, M.
    PHYSICAL REVIEW E, 2012, 86 (03):
  • [46] Effect of clustering on the emission of light charged particles
    Kundu, Samir
    Bhattacharya, C.
    Rana, T. K.
    Bhattacharya, S.
    Pandey, R.
    Banerjee, K.
    Roy, Pratap
    Meena, J. K.
    Mukherjee, G.
    Ghosh, T. K.
    Mukhopadhyay, S.
    Saha, A. K.
    Sahoo, J. K.
    Saha, R. Mandal
    Srivastava, V.
    Sinha, M.
    Asgar, Md. A.
    EUROPEAN PHYSICAL JOURNAL A, 2018, 54 (04):
  • [47] Effect of clustering on the emission of light charged particles
    Samir Kundu
    C. Bhattacharya
    T. K. Rana
    S. Bhattacharya
    R. Pandey
    K. Banerjee
    Pratap Roy
    J. K. Meena
    G. Mukherjee
    T. K. Ghosh
    S. Mukhopadhyay
    A. K. Saha
    J. K. Sahoo
    R. Mandal Saha
    V. Srivastava
    M. Sinha
    Md. A. Asgar
    The European Physical Journal A, 2018, 54
  • [48] The settling velocity of heavy particles in an aqueous near-isotropic turbulence
    Yang, TS
    Shy, SS
    PHYSICS OF FLUIDS, 2003, 15 (04) : 868 - 880
  • [49] Settling of finite-size particles in turbulence at different volume fractions
    Fornari, Walter
    Zade, Sagar
    Brandt, Luca
    Picano, Francesco
    ACTA MECHANICA, 2019, 230 (02) : 413 - 430
  • [50] Analytical expression for predicting the reduced settling velocity of small particles in turbulence
    Chen, Xiao
    Liu, Zhaowei
    Chen, Yongcan
    Wang, Haoran
    ENVIRONMENTAL FLUID MECHANICS, 2020, 20 (04) : 905 - 922