III-V Semiconductor Materials for Solar Hydrogen Production: Status and Prospects

被引:60
|
作者
Tournet, Julie [1 ]
Lee, Yonghwan [1 ]
Krishna, Siva K. [1 ,2 ]
Tan, Hark H. [1 ]
Jagadish, Chennupati [1 ]
机构
[1] Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys, Canberra, ACT 2601, Australia
[2] Australian Natl Univ, Res Sch Elect Energy & Mat Engn, Canberra, ACT 2601, Australia
来源
ACS ENERGY LETTERS | 2020年 / 5卷 / 02期
基金
澳大利亚研究理事会;
关键词
PHOTOELECTROCHEMICAL DEVICE; CONVERSION EFFICIENCY; MOLYBDENUM-DISULFIDE; HIGH-PERFORMANCE; WATER; GAN; CELLS; GENERATION; GROWTH; NANOWIRES;
D O I
10.1021/acsenergylett.9b02582
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Following recent developments in photoelectrochemical and photovoltaic-electrosynthetic systems, we present the benefits of III-V semiconductors for solar water splitting. In addition to their interesting light absorption and carrier transport properties, III-V alloys and multijunction structures enable the highest solar-to-hydrogen conversion efficiencies. However, many obstacles still stand in the way of practical realization of III-V solar water-splitting systems. Various surface protection strategies are being developed to address the instability of III-V semiconductors in an electrolyte. Meanwhile, multiple cost-reduction approaches are being implemented, including the use of solar concentration, epitaxial lift-off or spalling for substrate reuse, and monolithic or heterogeneous integration on silicon substrates. All these advances make III-V photoabsorbers a promising route toward decarbonated hydrogen production and pave the way to long-term deployment in real-world applications.
引用
收藏
页码:611 / 622
页数:23
相关论文
共 50 条
  • [21] Engineering III-V Semiconductor Nanowires for Device Applications
    Wong-Leung, Jennifer
    Yang, Inseok
    Li, Ziyuan
    Karuturi, Siva Krishna
    Fu, Lan
    Tan, Hark Hoe
    Jagadish, Chennupati
    ADVANCED MATERIALS, 2020, 32 (18)
  • [22] Thermodynamic analysis of growth of ternary III-V semiconductor materials by molecular-beam epitaxy
    Ye Zhi-cheng
    Shu Yong-chun
    Cao Xue
    Gong Liang
    Pi Biao
    Yao Jiang-hong
    Xing Xiao-dong
    Xu Jing-jun
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2011, 21 (01) : 146 - 151
  • [23] Novel III-V semiconductor epitaxy for optoelectronic devices through two-dimensional materials
    Zhao, Chao
    Li, Zhaonan
    Tang, Tianyi
    Sun, Jiaqian
    Zhan, Wenkang
    Xu, Bo
    Sun, Huajun
    Jiang, Hui
    Liu, Kong
    Qu, Shengchun
    Wang, Zhijie
    Wang, Zhanguo
    PROGRESS IN QUANTUM ELECTRONICS, 2021, 76
  • [24] Efficient terahertz devices based on III-V semiconductor photoconductors
    Kostakis, Ioannis
    Saeedkia, Daryoosh
    Missous, Mohamed
    IET OPTOELECTRONICS, 2014, 8 (02) : 33 - 39
  • [25] Epitaxy of III-V semiconductor nanowires towards optoelectronic devices
    Gao, Q.
    Joyce, H. J.
    Paiman, S.
    Tan, H. H.
    Kim, Y.
    Smith, L. M.
    Jackson, H. E.
    Yarrison-Rice, J. M.
    Zhang, X.
    Zou, J.
    Jagadish, C.
    2009 14TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2009), 2009, : 676 - +
  • [26] Growing III-V Semiconductor Heterostructures on SiC/Si Substrates
    Sharofidinov, Sh Sh
    Kukushkin, S. A.
    Red'kov, A., V
    Grashchenko, A. S.
    Osipov, A., V
    TECHNICAL PHYSICS LETTERS, 2019, 45 (07) : 711 - 713
  • [27] Growth of III-V semiconductor nanowires by molecular beam epitaxy
    Jabeen, F.
    Rubini, S.
    Martelli, F.
    MICROELECTRONICS JOURNAL, 2009, 40 (03) : 442 - 445
  • [28] A model of axial heterostructure formation in III-V semiconductor nanowires
    Dubrovskii, V. G.
    TECHNICAL PHYSICS LETTERS, 2016, 42 (03) : 332 - 335
  • [29] Comparison of Functionalized III-V Semiconductor Response for Nitric Oxide
    Garcia, Michael A.
    Losurdo, M.
    Wolter, S. D.
    Lampert, W. V.
    Bonaventura, J.
    Bruno, G.
    Yi, C.
    Brown, A. S.
    SENSOR LETTERS, 2008, 6 (04) : 627 - 634
  • [30] Recent progress of group III-V materials-based nanostructures for photodetection
    Cong, Xiangna
    Yin, Huabi
    Zheng, Yue
    He, Wenlong
    NANOTECHNOLOGY, 2024, 35 (38)