III-V Semiconductor Materials for Solar Hydrogen Production: Status and Prospects

被引:60
|
作者
Tournet, Julie [1 ]
Lee, Yonghwan [1 ]
Krishna, Siva K. [1 ,2 ]
Tan, Hark H. [1 ]
Jagadish, Chennupati [1 ]
机构
[1] Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys, Canberra, ACT 2601, Australia
[2] Australian Natl Univ, Res Sch Elect Energy & Mat Engn, Canberra, ACT 2601, Australia
来源
ACS ENERGY LETTERS | 2020年 / 5卷 / 02期
基金
澳大利亚研究理事会;
关键词
PHOTOELECTROCHEMICAL DEVICE; CONVERSION EFFICIENCY; MOLYBDENUM-DISULFIDE; HIGH-PERFORMANCE; WATER; GAN; CELLS; GENERATION; GROWTH; NANOWIRES;
D O I
10.1021/acsenergylett.9b02582
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Following recent developments in photoelectrochemical and photovoltaic-electrosynthetic systems, we present the benefits of III-V semiconductors for solar water splitting. In addition to their interesting light absorption and carrier transport properties, III-V alloys and multijunction structures enable the highest solar-to-hydrogen conversion efficiencies. However, many obstacles still stand in the way of practical realization of III-V solar water-splitting systems. Various surface protection strategies are being developed to address the instability of III-V semiconductors in an electrolyte. Meanwhile, multiple cost-reduction approaches are being implemented, including the use of solar concentration, epitaxial lift-off or spalling for substrate reuse, and monolithic or heterogeneous integration on silicon substrates. All these advances make III-V photoabsorbers a promising route toward decarbonated hydrogen production and pave the way to long-term deployment in real-world applications.
引用
收藏
页码:611 / 622
页数:23
相关论文
共 50 条
  • [11] Fabrication of III-V semiconductor quantum dots
    Akahane, Kouichi
    Yamamoto, Naokatsu
    PLASMONICS: NANOIMAGING, NANOFABRICATION, AND THEIR APPLICATIONS V, 2009, 7395
  • [12] AlScN: A III-V semiconductor based ferroelectric
    Fichtner, Simon
    Wolff, Niklas
    Lofink, Fabian
    Kienle, Lorenz
    Wagner, Bernhard
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (11)
  • [13] Engineering the Cell-Semiconductor Interface: A Materials Modification Approach using II-VI and III-V Semiconductor Materials
    Bain, Lauren E.
    Ivanisevic, Albena
    SMALL, 2015, 11 (07) : 768 - 780
  • [14] III-V semiconductor nanowires for optoelectronic device applications
    Joyce, Hannah J.
    Gao, Qiang
    Tan, H. Hoe
    Jagadish, C.
    Kim, Yong
    Zou, Jin
    Smith, Leigh M.
    Jackson, Howard E.
    Yarrison-Rice, Jan M.
    Parkinson, Patrick
    Johnston, Michael B.
    PROGRESS IN QUANTUM ELECTRONICS, 2011, 35 (2-3) : 23 - 75
  • [15] The theory of nucleation and polytypism of III-V semiconductor nanowires
    Dubrovskii, V. G.
    TECHNICAL PHYSICS LETTERS, 2015, 41 (02) : 203 - 207
  • [16] Surface Localization of Buried III-V Semiconductor Nanostructures
    Alonso-Gonzalez, P.
    Gonzalez, L.
    Fuster, D.
    Martin-Sanchez, J.
    Gonzalez, Yolanda
    NANOSCALE RESEARCH LETTERS, 2009, 4 (08): : 873 - 877
  • [17] Neutron spectroscopy using III-V semiconductor scintillators
    Wensman, Johnathan D.
    Guardala, Noel A.
    Mathur, Veerendra K.
    Currie, John F.
    CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XVI, 2015, 9455
  • [18] Electronic bands of III-V semiconductor polytypes and their alignment
    Belabbes, Abderrezak
    Panse, Christian
    Furthmueller, Juergen
    Bechstedt, Friedhelm
    PHYSICAL REVIEW B, 2012, 86 (07)
  • [19] Solar Hydrogen Production and Storage in Solid Form: Prospects for Materials and Methods
    Adaikalam, Kathalingam
    Vikraman, Dhanasekaran
    Karuppasamy, K.
    Kim, Hyun-Seok
    NANOMATERIALS, 2024, 14 (19)
  • [20] Brief Review of Surface Passivation on III-V Semiconductor
    Zhou, Lu
    Bo, Baoxue
    Yan, Xingzhen
    Wang, Chao
    Chi, Yaodan
    Yang, Xiaotian
    CRYSTALS, 2018, 8 (05):