III-V Semiconductor Materials for Solar Hydrogen Production: Status and Prospects

被引:60
|
作者
Tournet, Julie [1 ]
Lee, Yonghwan [1 ]
Krishna, Siva K. [1 ,2 ]
Tan, Hark H. [1 ]
Jagadish, Chennupati [1 ]
机构
[1] Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys, Canberra, ACT 2601, Australia
[2] Australian Natl Univ, Res Sch Elect Energy & Mat Engn, Canberra, ACT 2601, Australia
来源
ACS ENERGY LETTERS | 2020年 / 5卷 / 02期
基金
澳大利亚研究理事会;
关键词
PHOTOELECTROCHEMICAL DEVICE; CONVERSION EFFICIENCY; MOLYBDENUM-DISULFIDE; HIGH-PERFORMANCE; WATER; GAN; CELLS; GENERATION; GROWTH; NANOWIRES;
D O I
10.1021/acsenergylett.9b02582
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Following recent developments in photoelectrochemical and photovoltaic-electrosynthetic systems, we present the benefits of III-V semiconductors for solar water splitting. In addition to their interesting light absorption and carrier transport properties, III-V alloys and multijunction structures enable the highest solar-to-hydrogen conversion efficiencies. However, many obstacles still stand in the way of practical realization of III-V solar water-splitting systems. Various surface protection strategies are being developed to address the instability of III-V semiconductors in an electrolyte. Meanwhile, multiple cost-reduction approaches are being implemented, including the use of solar concentration, epitaxial lift-off or spalling for substrate reuse, and monolithic or heterogeneous integration on silicon substrates. All these advances make III-V photoabsorbers a promising route toward decarbonated hydrogen production and pave the way to long-term deployment in real-world applications.
引用
收藏
页码:611 / 622
页数:23
相关论文
共 50 条
  • [1] Solar-Driven Sustainability: III-V Semiconductor for Green Energy Production Technologies
    Chandran, Bagavath
    Oh, Jeong-Kyun
    Lee, Sang-Wook
    Um, Dae-Young
    Kim, Sung-Un
    Veeramuthu, Vignesh
    Park, Jin-Seo
    Han, Shuo
    Lee, Cheul-Ro
    Ra, Yong-Ho
    NANO-MICRO LETTERS, 2024, 16 (01)
  • [2] III-V Compound Semiconductor Nanowires
    Joyce, H. J.
    Paiman, S.
    Gao, Q.
    Tan, H. H.
    Kim, Y.
    Smith, L. M.
    Jackson, H. E.
    Yarrison-Rice, J. M.
    Zhang, X.
    Zou, J.
    Jagadish, C.
    2009 IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE, 2009, : 59 - +
  • [4] III-V Semiconductor Single Nanowire Solar Cells: A Review
    Li, Ziyuan
    Tan, Hark Hoe
    Jagadish, Chennupati
    Fu, Lan
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (09):
  • [5] III-V Compound Semiconductor Nanowires
    Paiman, S.
    Joyce, H. J.
    Kang, J. H.
    Gao, Q.
    Tan, H. H.
    Kim, Y.
    Zhang, X.
    Zou, J.
    Jagadish, C.
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 155 - +
  • [6] III-V compound materials and lasers on silicon
    Yang, Wenyu
    Li, Yajie
    Meng, Fangyuan
    Yu, Hongyan
    Wang, Mengqi
    Wang, Pengfei
    Luo, Guangzhen
    Zhou, Xuliang
    Pan, Jiaoqing
    JOURNAL OF SEMICONDUCTORS, 2019, 40 (10)
  • [7] Photoelectrochemistry of III-V epitaxial layers and nanowires for solar energy conversion
    Parameshwaran, Vijay
    Enck, Ryan
    Chung, Roy
    Kelley, Stephen
    Sampath, Anand
    Reed, Meredith
    Xu, Xiaoqing
    Clemens, Bruce
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS IX, 2017, 10194
  • [8] A Transmetalation Route for Colloidal GaAs Nanocrystals and Additional III-V Semiconductor Materials
    Lauth, Jannika
    Strupeit, Tim
    Komowski, Andreas
    Weller, Horst
    CHEMISTRY OF MATERIALS, 2013, 25 (08) : 1377 - 1383
  • [9] III-V Semiconductor Nanowires for Future Devices
    Schmid, H.
    Borg, B. M.
    Moselund, K.
    Das Kanungo, P.
    Signorello, G.
    Karg, S.
    Mensch, P.
    Schmidt, V.
    Riel, H.
    2014 DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION (DATE), 2014,
  • [10] Polytype Attainability in III-V Semiconductor Nanowires
    Johansson, Jonas
    Zanolli, Zeila
    Dick, Kimberly A.
    CRYSTAL GROWTH & DESIGN, 2016, 16 (01) : 371 - 379