A numerical technique for solution of the MRLW equation using quartic B-splines

被引:34
作者
Fazal-i-Haq [1 ]
Siraj-ul-Islam [2 ]
Tirmizi, Ikram A. [3 ]
机构
[1] Khyber Pakhtunkhwa Agr Univ, Dept Maths Stats Comp, Peshawar, Pakistan
[2] Univ Engn & Technol, Fac Basic Sci, Peshawar, Khyber Pakhtunk, Pakistan
[3] GIK Inst Engn Sci & Technol, Fac Engn Sci, Topi, Khyber Pakhtunk, Pakistan
关键词
Modified regularized long wave (MRLW) equation; B-spline collocation method; Nonlinear partial differential equations; Nonlinear dispersive waves; FINITE-DIFFERENCE SCHEME; LONG-WAVE EQUATION; GALERKIN METHOD; SIMULATION; MODEL;
D O I
10.1016/j.apm.2010.04.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Numerical scheme based on quartic B-spline collocation method is designed for the numerical solution of modified regularized long wave (MRLW) equation. Unconditional stability is proved using Von-Neumann approach. Performance of the method is checked through numerical examples. Using error norms L-2 and L-similar to and conservative properties of mass, momentum and energy, accuracy and efficiency of the new method is established through comparison with the existing techniques. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4151 / 4160
页数:10
相关论文
共 22 条
[1]   Soliton solution for nonlinear partial differential equations by cosine-function method [J].
Ali, A. H. A. ;
Soliman, A. A. ;
Raslan, K. R. .
PHYSICS LETTERS A, 2007, 368 (3-4) :299-304
[2]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[3]  
BONA JL, 1973, P CAMB PHILOS SOC, V73, P391
[4]   Galerkin method for the numerical solution of the RLW equation using quintic B-splines [J].
Dag, I ;
Saka, B ;
Irk, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 190 (1-2) :532-547
[5]   Application of cubic B-splines for numerical solution of the RLW equation [J].
Dag, I ;
Saka, B ;
Irk, D .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (02) :373-389
[6]   NUMERICAL STUDY OF REGULARIZED LONG-WAVE EQUATION .1. NUMERICAL-METHODS [J].
EILBECK, JC ;
MCGUIRE, GR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 19 (01) :43-57
[7]  
Gardner LRT, 1997, ARAB J SCI ENG, V22, P183
[8]   THE FOURIER PSEUDOSPECTRAL METHOD WITH A RESTRAIN OPERATOR FOR THE RLW EQUATION [J].
GUO, BY ;
CAO, WM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 74 (01) :110-126
[9]   A numerical simulation of solitary-wave solutions of the generalized regularized long-wave equation [J].
Kaya, D .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 149 (03) :833-841
[10]   An application of the decomposition method for the generalized KdV and RLW equations [J].
Kaya, D ;
El-Sayed, SM .
CHAOS SOLITONS & FRACTALS, 2003, 17 (05) :869-877