Query answering in rough knowledge bases

被引:0
作者
Vitória, A
Damásio, CV
Maluszyniski, J
机构
[1] Linkoping Univ, Dept Sci & Technol, S-60174 Norrkoping, Sweden
[2] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Informat, CENTRIA, P-2829516 Caparica, Portugal
[3] Linkoping Univ, Dept Comp & Informat Sci, S-58183 Linkoping, Sweden
来源
ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING | 2003年 / 2639卷
关键词
rough sets; logic programming; stable models; uncertain reasoning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a logic programming language which makes it possible to define and to reason about rough sets. In particular we show how to test for rough inclusion and rough equality. This extension to our previous work [7] is motivated by the need of these concepts in practical applications.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 8 条
  • [1] LOGIC PROGRAMMING AND NEGATION - A SURVEY
    APT, KR
    BOL, RN
    [J]. JOURNAL OF LOGIC PROGRAMMING, 1994, 20 (1-3): : 9 - 71
  • [2] EITER T, KR 98 PRINCIPLES KNO, P406
  • [3] NIEMELA I, 1996, P JOINT INT C S LOG, P289
  • [4] Pawlak Z, 1991, Rough sets: Theoretical aspects of reasoning about data, V9, DOI DOI 10.1007/978-94-011-3534-4
  • [5] PEARCE D, 1993, LOGIC PROGRAMMING AND NON-MONOTONIC REASONING, P457
  • [6] Sakama C., 1995, Journal of Logic and Computation, V5, P265, DOI 10.1093/logcom/5.3.265
  • [7] Vitória A, 2002, LECT NOTES ARTIF INT, V2475, P205
  • [8] Ziarko W, 2002, LECT NOTES ARTIF INT, V2475, P514