A Generalization of the Banach Contraction Principle in Noncomplete Metric Spaces

被引:6
作者
Suzuki, Tomonari [1 ]
机构
[1] Kyushu Inst Technol, Fac Engn, Dept Basic Sci, Kitakyushu, Fukuoka 8048550, Japan
基金
日本学术振兴会;
关键词
the Banach contraction principle; fixed point; completeness; the Banach fixed point property; COMPLETENESS; THEOREMS; MAPPINGS;
D O I
10.2298/FIL1711357S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a sufficient condition on metric spaces possessing the Banach fixed point property (BFPP). Further we also give a sufficient condition on not possessing BFPP.
引用
收藏
页码:3357 / 3363
页数:7
相关论文
共 27 条
  • [1] BANACH S., 1922, Fundam. Math., V3, P133, DOI DOI 10.4064/FM-3-1-133-181
  • [2] Bessaga C., 1959, Colloq. Math, V7, P41, DOI 10.4064/cm-7-1-41-43
  • [3] Bogin J., 1976, Canad. Math. Bull., V19, P7
  • [4] COMPLETENESS AND THE CONTRACTION PRINCIPLE
    BORWEIN, JM
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (02) : 246 - 250
  • [5] Caccioppoli R., 1930, Atti Accad. Naz. Lincei Rend, V11, P794
  • [6] Caristi J., 1975, Lecture Notes Math., V490, P74
  • [7] Ciric L., 1981, Publ. Inst. Math. (Beograd) (N.S.), V30, P25
  • [8] GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE
    CIRIC, LB
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) : 267 - 273
  • [9] Connell EH., 1959, Proc. Am. Math. Soc, V10, P974, DOI DOI 10.1090/S0002-9939-1959-0110093-3
  • [10] Edelstein M., 1961, Proc.Amer.Math.Soc., V12, P7