X-BAND TERRASAR-X AND COSMO-SKYMED SAR DATA FOR BARE SOIL PARAMETERS ESTIMATION

被引:3
|
作者
Gorrab, Azza [1 ]
Zribi, Mehrez [1 ]
Baghdadi, Nicolas
Mougenot, Bernard [1 ]
Chabaane, Zohra Lili
机构
[1] CNRS UPS IRD CNES, CESBIO, F-31401 Toulouse 9, France
来源
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2014年
关键词
Soil moisture; roughness; TerraSAR-X; COSMO-Sky-Med; RADAR DATA; AGRICULTURAL FIELDS; SURFACE PARAMETERS; MOISTURE; SENSITIVITY; ROUGHNESS;
D O I
10.1109/IGARSS.2014.6947165
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The goal of this paper is to analyze the potential of COSMO-SkyMed and TerraSAR-X SAR measurements over bare soils in order to estimate correctly soil parameters. We analyzed statistically the relationships between X-SAR backscattering signals function of soil moisture and different roughness parameters (the root mean square height Hrms, the Zs parameter and the Zg parameter) at HH polarization and for an incidence angle about 35.5 degrees. Results have shown a high sensitivity of real radar data to the two soil parameters: roughness and moisture. A linear relationship is obtained between volumetric soil moisture and radar signal with the strongest correlation observed with gravimetric moisture measurements. A logarithmic correlation is observed between backscattering coefficient and all roughness parameters. The highest dynamic sensitivity is obtained with Zg parameter.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Mapping of bare soil surface parameters from TerraSAR-X radar images over a semi-arid region
    Gorrab, A.
    Zribi, M.
    Baghdadi, N.
    Chabaane, Z. Lili
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVII, 2015, 9637
  • [32] Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis
    Bovenga, F.
    Wasowski, J.
    Nitti, D. O.
    Nutricato, R.
    Chiaradia, M. T.
    REMOTE SENSING OF ENVIRONMENT, 2012, 119 : 272 - 285
  • [33] Intermittent SBAS (ISBAS) InSAR with COSMO-SkyMed X-band high resolution SAR data for landslide inventory mapping in Piana degli Albanesi (Italy)
    Cigna, Francesca
    Novellino, Alessandro
    Jordan, Colm J.
    Sowter, Andrew
    Ramondini, Massimo
    Calcaterra, Domenico
    SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XIV, 2014, 9243
  • [34] Soil Moisture Estimation Using High-Resolution Spotlight TerraSAR-X Data
    Kseneman, Matej
    Gleich, Dusan
    Cucej, Zarko
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) : 686 - 690
  • [35] Sub-urban landscape characterization by very-high resolution X-band COSMO-Skymed SAR images: first results
    Del Frate, Fabio
    Loschiavo, Domenico
    Pratola, Chiara
    Schiavon, Giovanni
    Solimini, Domenico
    SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES X, 2010, 7829
  • [36] Soil moisture estimation using multi linear regression with terraSAR-X data
    Garcia, G.
    Brogioni, M.
    Venturini, V.
    Rodriguez, L.
    Fontanelli, G.
    Walker, E.
    Graciani, S.
    Macelloni, G.
    REVISTA DE TELEDETECCION, 2016, (46): : 73 - 81
  • [37] Toward an Operational Bare Soil Moisture Mapping Using TerraSAR-X Data Acquired Over Agricultural Areas
    Aubert, Maelle
    Baghdadi, Nicolas N.
    Zribi, Mehrez
    Ose, Kenji
    El Hajj, Mahmoud
    Vaudour, Emmanuelle
    Gonzalez-Sosa, Enrique
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (02) : 900 - 916
  • [38] Effect of polarization orientation angle shift on X-band TDM SAR COSSC Product of TerraSAR-X and TanDEM-X
    Gupta, Asmita
    Kumar, Shashi
    Pandey, Uttara
    LAND SURFACE AND CRYOSPHERE REMOTE SENSING III, 2016, 9877
  • [39] Comparison of Observation Performance of Urban Displacement Using ALOS-1 L-band PALSAR and COSMO-SkyMed X-band SAR Time Series Images
    Choi, Jung-Hyun
    Kim, Sang-Wan
    KOREAN JOURNAL OF REMOTE SENSING, 2018, 34 (02) : 283 - 293
  • [40] Soil-moisture estimation from TerraSAR-X data using neural networks
    Kseneman, Matej
    Gleich, Dusan
    Potocnik, Bozidar
    MACHINE VISION AND APPLICATIONS, 2012, 23 (05) : 937 - 952