Controllable SiOx Nanorod Memristive Neuron for Probabilistic Bayesian Inference

被引:38
作者
Choi, Sanghyeon [1 ]
Kim, Gwang Su [1 ,2 ]
Yang, Jehyeon [1 ]
Cho, Haein [1 ]
Kang, Chong-Yun [1 ,2 ]
Wang, Gunuk [1 ,3 ]
机构
[1] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, 145 Anam Ro, Seoul 02841, South Korea
[2] Korea Inst Sci & Technol KIST, Elect Mat Res Ctr, 5,Hwarang Ro 14 Gil, Seoul 02792, South Korea
[3] Korea Univ, Coll Engn, Dept Integrat Energy Engn, 145 Anam Ro, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
artificial neurons; memristors; nanorods; neuromorphic computing; probabilistic neural networks; silicon oxide; ARTIFICIAL NEURON; SILICON-OXIDE; THRESHOLD; NETWORK; NANOTUBES; SYSTEMS; ELEMENTS; DEVICES; MODEL;
D O I
10.1002/adma.202104598
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Modern artificial neural network technology using a deterministic computing framework is faced with a critical challenge in dealing with massive data that are largely unstructured and ambiguous. This challenge demands the advances of an elementary physical device for tackling these uncertainties. Here, we designed and fabricated a SiOx nanorod memristive device by employing the glancing angle deposition (GLAD) technique, suggesting a controllable stochastic artificial neuron that can mimic the fundamental integrate-and-fire signaling and stochastic dynamics of a biological neuron. The nanorod structure provides the random distribution of multiple nanopores all across the active area, capable of forming a multitude of Si filaments at many SiOx nanorod edges after the electromigration process, leading to a stochastic switching event with very high dynamic range (approximate to 5.15 x 10(10)) and low energy (approximate to 4.06 pJ). Different probabilistic activation (ProbAct) functions in a sigmoid form are implemented, showing its controllability with low variation by manufacturing and electrical programming schemes. Furthermore, as an application prospect, based on the suggested memristive neuron, we demonstrated the self-resting neural operation with the local circuit configuration and revealed probabilistic Bayesian inferences for genetic regulatory networks with low normalized mean squared errors (approximate to 2.41 x 10(-2)) and its robustness to the ProbAct variation.
引用
收藏
页数:13
相关论文
共 81 条
[71]   Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene [J].
Yao, Jun ;
Lin, Jian ;
Dai, Yanhua ;
Ruan, Gedeng ;
Yan, Zheng ;
Li, Lei ;
Zhong, Lin ;
Natelson, Douglas ;
Tour, James M. .
NATURE COMMUNICATIONS, 2012, 3
[72]   In situ imaging of the conducting filament in a silicon oxide resistive switch [J].
Yao, Jun ;
Zhong, Lin ;
Natelson, Douglas ;
Tour, James M. .
SCIENTIFIC REPORTS, 2012, 2
[73]   Resistive Switching in Nanogap Systems on SiO2 Substrates [J].
Yao, Jun ;
Zhong, Lin ;
Zhang, Zengxing ;
He, Tao ;
Jin, Zhong ;
Wheeler, Patrick J. ;
Natelson, Douglas ;
Tour, James M. .
SMALL, 2009, 5 (24) :2910-2915
[74]   A Hardware and Energy-Efficient Online Learning Neural Network With an RRAM Crossbar Array and Stochastic Neurons [J].
Yeo, Injune ;
Gi, Sang-Gyun ;
Wang, Gunuk ;
Lee, Byung-Geun .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (11) :11554-11564
[75]   Biological plausibility and stochasticity in scalable VO2 active memristor neurons [J].
Yi, Wei ;
Tsang, Kenneth K. ;
Lam, Stephen K. ;
Bai, Xiwei ;
Crowell, Jack A. ;
Flores, Elias A. .
NATURE COMMUNICATIONS, 2018, 9
[76]  
Zermani S, 2015, 2015 IEEE CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (PHM)
[77]   Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer's Disease [J].
Zhang, Bin ;
Gaiteri, Chris ;
Bodea, Liviu-Gabriel ;
Wang, Zhi ;
McElwee, Joshua ;
Podtelezhnikov, Alexei A. ;
Zhang, Chunsheng ;
Xie, Tao ;
Tran, Linh ;
Dobrin, Radu ;
Fluder, Eugene ;
Clurman, Bruce ;
Melquist, Stacey ;
Narayanan, Manikandan ;
Suver, Christine ;
Shah, Hardik ;
Mahajan, Milind ;
Gillis, Tammy ;
Mysore, Jayalakshmi ;
MacDonald, Marcy E. ;
Lamb, John R. ;
Bennett, David A. ;
Molony, Cliona ;
Stone, David J. ;
Gudnason, Vilmundur ;
Myers, Amanda J. ;
Schadt, Eric E. ;
Neumann, Harald ;
Zhu, Jun ;
Emilsson, Valur .
CELL, 2013, 153 (03) :707-720
[78]   An artificial spiking afferent nerve based on Mott memristors for neurorobotics [J].
Zhang, Xumeng ;
Zhuo, Ye ;
Luo, Qing ;
Wu, Zuheng ;
Midya, Rivu ;
Wang, Zhongrui ;
Song, Wenhao ;
Wang, Rui ;
Upadhyay, Navnidhi K. ;
Fang, Yilin ;
Kiani, Fatemeh ;
Rao, Mingyi ;
Yang, Yang ;
Xia, Qiangfei ;
Liu, Qi ;
Liu, Ming ;
Yang, J. Joshua .
NATURE COMMUNICATIONS, 2020, 11 (01)
[79]  
Zhang XM, 2018, IEEE ELECTR DEVICE L, V39, P308, DOI [10.1007/978-981-13-2829-9_28, 10.1109/LED.2017.2782752]
[80]   Highly Compact Artificial Memristive Neuron with Low Energy Consumption [J].
Zhang, Yishu ;
He, Wei ;
Wu, Yujie ;
Huang, Kejie ;
Shen, Yangshu ;
Su, Jiasheng ;
Wang, Yaoyuan ;
Zhang, Ziyang ;
Ji, Xinglong ;
Li, Guoqi ;
Zhang, Hongtao ;
Song, Sen ;
Li, Huanglong ;
Sun, Litao ;
Zhao, Rong ;
Shi, Luping .
SMALL, 2018, 14 (51)