VOC-Net: A Deep Learning Model for the Automated Classification of Rotational THz Spectra of Volatile Organic Compounds

被引:12
作者
Chowdhury, M. Arshad Zahangir [1 ]
Rice, Timothy E. [1 ]
Oehlschlaeger, Matthew A. [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, 110 8th St, Troy, NY 12180 USA
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 17期
基金
美国国家科学基金会;
关键词
VOC; DNN; CNN; classification; THz; spectroscopy; rotational; microelectronic; spectrometer; gas sensing;
D O I
10.3390/app12178447
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conventional black box machine learning (ML) algorithms for gas-phase species identification from THz frequency region absorption spectra have been reported in the literature. While the robust classification performance of such ML models is promising, the black box nature of these ML tools limits their interpretability and acceptance in application. Here, a one-dimensional convolutional neural network (CNN), VOC-Net, is developed and demonstrated for the classification of absorption spectra for volatile organic compounds (VOCs) in the THz frequency range, specifically from 220 to 330 GHz where prior experimental data is available. VOC-Net is trained and validated against simulated spectra, and also demonstrated and tested against experimental spectra. The performance of VOC-Net is examined by the consideration of confusion matrices and receiver-operator-characteristic (ROC) curves. The model is shown to be 99+% accurate for the classification of simulated spectra and 97% accurate for the classification of noisy experimental spectra. The model's internal logic is examined using the Gradient-weighted Class Activation Mapping (Grad-CAM) method, which provides a visual and interpretable explanation of the model's decision making process with respect to the important distinguishing spectral features.
引用
收藏
页数:19
相关论文
共 40 条
[1]  
Abadi Martin, 2016, arXiv
[2]  
Chevalier P, 2011, IEEE BIPOL BICMOS, P57, DOI 10.1109/BCTM.2011.6082749
[3]   Evaluation of machine learning methods for classification of rotational absorption spectra for gases in the 220-330 GHz range [J].
Chowdhury, M. Arshad Zahangir ;
Rice, Timothy E. ;
Oehlschlaeger, Matthew A. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2021, 127 (03)
[4]   Detection of volatile organic compounds: From chemical gas sensors to terahertz spectroscopy [J].
Galstyan, Vardan ;
D'Arco, Annalisa ;
Di Fabrizio, Marta ;
Poli, Nicola ;
Lupi, Stefano ;
Comini, Elisabetta .
REVIEWS IN ANALYTICAL CHEMISTRY, 2021, 40 (01) :33-57
[5]   Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra [J].
Ghosh, Kunal ;
Stuke, Annika ;
Todorovic, Milica ;
Jorgensen, Peter Bjorn ;
Schmidt, Mikkel N. ;
Vehtari, Aki ;
Rinke, Patrick .
ADVANCED SCIENCE, 2019, 6 (09)
[6]   The HITRAN2016 molecular spectroscopic database [J].
Gordon, I. E. ;
Rothman, L. S. ;
Hill, C. ;
Kochanov, R. V. ;
Tan, Y. ;
Bernath, P. F. ;
Birk, M. ;
Boudon, V. ;
Campargue, A. ;
Chance, K. V. ;
Drouin, B. J. ;
Flaud, J. -M. ;
Gamache, R. R. ;
Hodges, J. T. ;
Jacquemart, D. ;
Perevalov, V. I. ;
Perrin, A. ;
Shine, K. P. ;
Smith, M. -A. H. ;
Tennyson, J. ;
Toon, G. C. ;
Tran, H. ;
Tyuterev, V. G. ;
Barbe, A. ;
Csaszar, A. G. ;
Devi, V. M. ;
Furtenbacher, T. ;
Harrison, J. J. ;
Hartmann, J. -M. ;
Jolly, A. ;
Johnson, T. J. ;
Karman, T. ;
Kleiner, I. ;
Kyuberis, A. A. ;
Loos, J. ;
Lyulin, O. M. ;
Massie, S. T. ;
Mikhailenko, S. N. ;
Moazzen-Ahmadi, N. ;
Mueller, H. S. P. ;
Naumenko, O. V. ;
Nikitin, A. V. ;
Polyansky, O. L. ;
Rey, M. ;
Rotger, M. ;
Sharpe, S. W. ;
Sung, K. ;
Starikova, E. ;
Tashkun, S. A. ;
Vander Auwera, J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 203 :3-69
[7]   A Survey of Methods for Explaining Black Box Models [J].
Guidotti, Riccardo ;
Monreale, Anna ;
Ruggieri, Salvatore ;
Turin, Franco ;
Giannotti, Fosca ;
Pedreschi, Dino .
ACM COMPUTING SURVEYS, 2019, 51 (05)
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]   A survey of the recent architectures of deep convolutional neural networks [J].
Khan, Asifullah ;
Sohail, Anabia ;
Zahoora, Umme ;
Qureshi, Aqsa Saeed .
ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (08) :5455-5516
[10]   1D convolutional neural networks and applications: A survey [J].
Kiranyaz, Serkan ;
Avci, Onur ;
Abdeljaber, Osama ;
Ince, Turker ;
Gabbouj, Moncef ;
Inman, Daniel J. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 151