Universal control of a six-qubit quantum processor in silicon

被引:248
作者
Philips, Stephan G. J. [1 ,2 ]
Amitonov, Sergey, V [1 ,2 ]
de Snoo, Sander L. [1 ,2 ]
Russ, Maximilian [1 ,2 ]
Kalhor, Nima [1 ,2 ]
Volk, Christian [1 ,2 ]
Lawrie, William I. L. [1 ,2 ]
Brousse, Delphine [3 ,4 ]
Tryputen, Larysa [3 ,4 ]
Wuetz, Brian Paquelet [1 ,2 ]
Sammak, Amir [3 ,4 ]
Veldhorst, Menno [1 ,2 ]
Scappucci, Giordano [1 ,2 ]
Vandersypen, Lieven M. K. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
[3] QuTech, Delft, Netherlands
[4] Netherlands Org Appl Sci Res TNO, Delft, Netherlands
关键词
SPIN QUBIT; CHARGE; NOISE; GATE;
D O I
10.1038/s41586-022-05117-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Future quantum computers capable of solving relevant problems will require a large number of qubits that can be operated reliably(1). However, the requirements of having a large qubit count and operating with high fidelity are typically conflicting. Spins in semiconductor quantum dots show long-term promise(2,3) but demonstrations so far use between one and four qubits and typically optimize the fidelity of either single- or two-qubit operations, or initialization and readout(4-11). Here, we increase the number of qubits and simultaneously achieve respectable fidelities for universal operation, state preparation and measurement. We design, fabricate and operate a six-qubit processor with a focus on careful Hamiltonian engineering, on a high level of abstraction to program the quantum circuits, and on efficient background calibration, all of which are essential to achieve high fidelities on this extended system. State preparation combines initialization by measurement and real-time feedback with quantum-non-demolition measurements. These advances will enable testing of increasingly meaningful quantum protocols and constitute a major stepping stone towards large-scale quantum computers.
引用
收藏
页码:919 / +
页数:20
相关论文
共 59 条
[1]   Gate-defined quantum dots in intrinsic silicon [J].
Angus, Susan J. ;
Ferguson, Andrew J. ;
Dzurak, Andrew S. ;
Clark, Robert G. .
NANO LETTERS, 2007, 7 (07) :2051-2055
[2]   Quantum circuits with many photons on a programmable nanophotonic chip [J].
Arrazola, J. M. ;
Bergholm, V ;
Bradler, K. ;
Bromley, T. R. ;
Collins, M. J. ;
Dhand, I ;
Fumagalli, A. ;
Gerrits, T. ;
Goussev, A. ;
Helt, L. G. ;
Hundal, J. ;
Isacsson, T. ;
Israel, R. B. ;
Izaac, J. ;
Jahangiri, S. ;
Janik, R. ;
Killoran, N. ;
Kumar, S. P. ;
Lavoie, J. ;
Lita, A. E. ;
Mahler, D. H. ;
Menotti, M. ;
Morrison, B. ;
Nam, S. W. ;
Neuhaus, L. ;
Qi, H. Y. ;
Quesada, N. ;
Repingon, A. ;
Sabapathy, K. K. ;
Schuld, M. ;
Su, D. ;
Swinarton, J. ;
Szava, A. ;
Tan, K. ;
Tan, P. ;
Vaidya, V. D. ;
Vernon, Z. ;
Zabaneh, Z. ;
Zhang, Y. .
NATURE, 2021, 591 (7848) :54-+
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]   Fast and High-Fidelity State Preparation and Measurement in Triple-Quantum-Dot Spin Qubits [J].
Blumoff, Jacob Z. ;
Pan, Andrew S. ;
Keating, Tyler E. ;
Andrews, Reed W. ;
Barnes, David W. ;
Brecht, Teresa L. ;
Croke, Edward T. ;
Euliss, Larken E. ;
Fast, Jacob A. ;
Jackson, Clayton A. C. ;
Jones, Aaron M. ;
Kerckhoff, Joseph ;
Lanza, Robert K. ;
Raach, Kate ;
Thomas, Bryan J. ;
Velunta, Roland ;
Weinstein, Aaron J. ;
Ladd, Thaddeus D. ;
Eng, Kevin ;
Borselli, Matthew G. ;
Hunter, Andrew T. ;
Rakher, Matthew T. .
PRX QUANTUM, 2022, 3 (01)
[5]   Pauli spin blockade in undoped Si/SiGe two-electron double quantum dots [J].
Borselli, M. G. ;
Eng, K. ;
Croke, E. T. ;
Maune, B. M. ;
Huang, B. ;
Ross, R. S. ;
Kiselev, A. A. ;
Deelman, P. W. ;
Alvarado-Rodriguez, I. ;
Schmitz, A. E. ;
Sokolich, M. ;
Holabird, K. S. ;
Hazard, T. M. ;
Gyure, M. F. ;
Hunter, A. T. .
APPLIED PHYSICS LETTERS, 2011, 99 (06)
[6]  
Boter J. M., 2021, SPIDER WEB ARRAY SPA
[7]   Trapped-ion quantum computing: Progress and challenges [J].
Bruzewicz, Colin D. ;
Chiaverini, John ;
McConnell, Robert ;
Sage, Jeremy M. .
APPLIED PHYSICS REVIEWS, 2019, 6 (02)
[8]   Roads towards fault-tolerant universal quantum computation [J].
Campbell, Earl T. ;
Terhal, Barbara M. ;
Vuillot, Christophe .
NATURE, 2017, 549 (7671) :172-179
[9]   Rapid High-Fidelity Spin-State Readout in Si/Si-Ge Quantum Dots via rf Reflectometry [J].
Connors, Elliot J. ;
Nelson, J. J. ;
Nichol, John M. .
PHYSICAL REVIEW APPLIED, 2020, 13 (02)
[10]  
Crawford O, 2022, Arxiv, DOI arXiv:2201.02877