The boundary of universal discrete quantum groups, exactness, and factoriality

被引:89
作者
Vaes, Stefaan
Vergnioux, Roland
机构
[1] CNRS, F-75013 Paris, France
[2] Univ Munster, Inst Math, D-48149 Munster, Germany
[3] Univ Caen, Lab Math Nicolas Oresme, F-14032 Caen, France
关键词
D O I
10.1215/S0012-7094-07-14012-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the C*-algebras and von Neumann algebras associated with the universal discrete quantum groups. They give rise to full prime factors and simple exact C*- algebras. The main tool in our work is the study of an amenable boundary action, yielding the Akemann-Ostrand property. Finally, this boundary can be identified with the Martin or the Poisson boundary of a quantum random walk.
引用
收藏
页码:35 / 84
页数:50
相关论文
共 29 条
[1]   NONCOMMUTATIVE DYNAMIC-SYSTEMS AND AVERAGING [J].
ANANTHARAMANDELAROCHE, C .
MATHEMATISCHE ANNALEN, 1987, 279 (02) :297-315
[2]  
BAAJ S, 1993, ANN SCI ECOLE NORM S, V26, P425
[3]  
Banica T, 1996, CR ACAD SCI I-MATH, V322, P241
[4]  
Banica T, 1997, COMMUN MATH PHYS, V190, P143, DOI 10.1007/s002200050237
[5]   THE NEY-SPITZER THEOREM ON THE DUAL OF SU(2) [J].
BIANE, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 345 (01) :179-194
[6]   Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups [J].
Bichon, J ;
De Rijdt, A ;
Vaes, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (03) :703-728
[7]  
CARTER JS, 1995, MATH NOTES, V43
[8]   Martin boundary theory of some quantum random walks [J].
Collins, B .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (03) :367-384
[9]   HOMOGENEITY OF STATE SPACE OF FACTORS OF TYPE-III [J].
CONNES, A ;
STORMER, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 28 (02) :187-196
[10]  
Drinfeld V G, 1987, P INT C MATH BERKELE, V1, P798