Some new identities on the Apostol-Bernoulli polynomials of higher order derived from Bernoulli basis

被引:3
作者
Bagdasaryan, Armen [1 ,2 ]
Araci, Serkan [3 ]
Acikgoz, Mehmet [4 ]
He, Yuan [5 ]
机构
[1] Amer Univ Middle East, Dept Math & Stat, Kuwait 15453, Egaila, Kuwait
[2] Russian Acad Sci, Inst Control Sci, 65 Profsoyuznaya, Moscow 117997, Russia
[3] Hasan Kalyoncu Univ, Dept Econ, Fac Econ Adm & Social Sci, TR-27410 Gaziantep, Turkey
[4] Gaziantep Univ, Dept Math, Fac Arts & Sci, TR-27310 Gaziantep, Turkey
[5] Kunming Univ Sci & Technol, Fac Sci, Kunming 650500, Yunnan, Peoples R China
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 05期
关键词
Generating function; Bernoulli polynomials of higher order; Euler polynomials of higher order; Hermite polynomials; Apostol-Bernoulli polynomials of higher order; Apostol-Euler polynomials of higher order; identities; EULER POLYNOMIALS; Q-EXTENSIONS; THEOREMS; FORMULAS;
D O I
10.22436/jnsa.009.05.66
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we introduce a method in order to obtain some new interesting relations and identities of the Apostol-Bernoulli polynomials of higher order, which are derived from Bernoulli polynomial basis. Finally, by utilizing this method, we also get formulas for the convolutions of Bernoulli and Euler polynomials in terms of Apostol-Bernoulli polynomials of higher order. (C) 2016 All rights reserved.
引用
收藏
页码:2697 / 2704
页数:8
相关论文
共 22 条
[1]  
[Anonymous], 1922, Acta Math., DOI [10.1007/BF02401755, DOI 10.1007/BF02401755]
[2]  
[Anonymous], 1955, HIGHER TRANSCENDENTA
[3]  
[Anonymous], 1975, TABLE SERIES PRODUCT
[4]  
Araci S., 2012, Advanced Studies in Contemporary Mathematics, V22, P399
[5]   THEOREMS ON GENOCCHI POLYNOMIALS OF HIGHER ORDER ARISING FROM GENOCCHI BASIS [J].
Araci, Serkan ;
Sen, Erdogan ;
Acikgoz, Mehmet .
TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (02) :473-482
[6]   An Elementary and Real Approach to Values of the Riemann Zeta Function [J].
Bagdasaryan, A. G. .
PHYSICS OF ATOMIC NUCLEI, 2010, 73 (02) :251-254
[7]   Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta function [J].
Choi, Junesang ;
Anderson, P. J. ;
Srivastava, H. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (02) :723-737
[8]   Sums of products of Bernoulli numbers [J].
Dilcher, K .
JOURNAL OF NUMBER THEORY, 1996, 60 (01) :23-41
[9]  
He Y., 2014, ADV DIFFERENCE EQU, V2014
[10]   Some Formulae of Products of the Apostol-Bernoulli and Apostol-Euler Polynomials [J].
He, Yuan ;
Wang, Chunping .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012