PGC-1β regulates angiogenesis in skeletal muscle

被引:45
|
作者
Rowe, Glenn C.
Jang, Cholsoon
Patten, Ian S.
Arany, Zolt [1 ,2 ]
机构
[1] Beth Israel Deaconess Med Ctr, Cardiovasc Inst, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Boston, MA 02115 USA
关键词
peroxisome proliferator-activated receptor-gamma coactivator-1 beta; TRANSCRIPTIONAL COACTIVATOR PGC-1-ALPHA; MITOCHONDRIAL BIOGENESIS; GENE-EXPRESSION; HEPATIC GLUCONEOGENESIS; OXIDATIVE-METABOLISM; ERR-ALPHA; CELLS; ACTIVATION; DISEASE; FIBERS;
D O I
10.1152/ajpendo.00681.2010
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Rowe GC, Jang C, Patten IS, Arany Z. PGC-1 beta regulates angiogenesis in skeletal muscle. Am J Physiol Endocrinol Metab 301: E155-E163, 2011. First published March 1, 2011; doi: 10.1152/ajpendo.00681.2010.-Aerobic metabolism requires oxygen and carbon sources brought to tissues via the vasculature. Metabolically active tissues such as skeletal muscle can regulate blood vessel density to match metabolic needs; however, the molecular cues that coordinate these processes remain poorly understood. Here we report that the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1 beta (PGC-1 beta), a potent regulator of mitochondrial biology, induces angiogenesis in skeletal muscle. PGC-1 beta induces the expression of vascular endothelial growth factor (VEGF) in cell culture and in vivo. The induction of VEGF by PGC-1 beta requires coactivation of the orphan nuclear receptor estrogen-related receptor-alpha (ERR alpha) and is independent of the hypoxia-inducible factor (HIF) pathway. In coculture experiments, overexpression of PGC-1 beta in skeletal myotubes increases the migration of adjacent endothelial cells, and this depends on VEGF signaling. Transgenic expression of PGC-1 beta in skeletal myocytes dramatically increases muscular vessel density. Taken together, these data indicate that PGC-1 beta is a potent regulator of angiogenesis, thus providing a novel link between the regulations of oxidative metabolism and vascular density.
引用
收藏
页码:E155 / E163
页数:9
相关论文
共 50 条
  • [21] The role of PGC-1 coactivators in aging skeletal muscle and heart
    Dillon, Lloye M.
    Rebelo, Adriana P.
    Moraes, Carlos T.
    IUBMB LIFE, 2012, 64 (03) : 231 - 241
  • [22] Transcriptional control of the Pgc-1α gene in skeletal muscle in vivo
    Yan, Zhen
    Li, Ping
    Akimoto, Takayuki
    EXERCISE AND SPORT SCIENCES REVIEWS, 2007, 35 (03): : 97 - 101
  • [23] Role of PGC-1α signaling in skeletal muscle health and disease
    Kang, Chounghun
    Ji, Li Li
    NUTRITION AND PHYSICAL ACTIVITY IN AGING, OBESITY, AND CANCER, 2012, 1271 : 110 - 117
  • [24] PGC-1[alpha] and upstream regulators in human skeletal muscle
    Norrbom, Jessica
    Rundqvist, Helene
    Sundberg, Carl Johan
    Jansson, Eva
    Gustafsson, Thomas
    FASEB JOURNAL, 2008, 22
  • [25] The microRNA miR-696 regulates PGC-1α in mouse skeletal muscle in response to physical activity
    Aoi, Wataru
    Naito, Yuji
    Mizushima, Katsura
    Takanami, Yoshikazu
    Kawai, Yukari
    Ichikawa, Hiroshi
    Yoshikawa, Toshikazu
    AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2010, 298 (04): : E799 - E806
  • [26] Regulation of PGC-1α expression in skeletal muscle: Comparison of the effects of calcineurin and PKA/cAMP signaling on PGC-1α transcription
    Price, Russ
    Zheng, Bin
    Li, Haiyan
    Woodworth-Hobbs, Myra
    Gooch, Jennifer
    FASEB JOURNAL, 2011, 25
  • [27] PGC-1α-induced improvements in skeletal muscle metabolism and insulin sensitivity
    Bonen, Arend
    APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, 2009, 34 (03) : 307 - 314
  • [28] Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology
    Petra S. Eisele
    Christoph Handschin
    Seminars in Immunopathology, 2014, 36 : 27 - 53
  • [29] Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α
    Arnold, Anne-Sophie
    Gill, Jonathan
    Christe, Martine
    Ruiz, Rocio
    McGuirk, Shawn
    St-Pierre, Julie
    Tabares, Lucia
    Handschin, Christoph
    NATURE COMMUNICATIONS, 2014, 5
  • [30] Reduced Mitochondrial Function in Skeletal Muscle of PGC-1 A Knockout Mice
    Shi, Yun
    Liu, Yuhong
    Jernigan, Amanda L.
    Ward, Walter F.
    VanRemmen, Holly
    FREE RADICAL BIOLOGY AND MEDICINE, 2008, 45 : S23 - S23