Reference Point Based Multi-Objective Optimization of Reservoir Operation: a Comparison of Three Algorithms

被引:15
|
作者
Tang, Rong [1 ]
Li, Ke [2 ]
Ding, Wei [1 ]
Wang, Yuntao [1 ]
Zhou, Huicheng [1 ]
Fu, Guangtao [3 ]
机构
[1] Dalian Univ Technol, Sch Hydraul Engn, Dalian 116023, Liaoning, Peoples R China
[2] Univ Exeter, Dept Comp Sci, Coll Engn Math & Phys Sci, North Pk Rd, Exeter EX4 4QF, Devon, England
[3] Univ Exeter, Coll Engn Math & Phys Sci, Ctr Water Syst, North Pk Rd, Exeter EX4 4QF, Devon, England
关键词
Multi-objective optimization; NSGA-II; Preference; Reservoir operation; EVOLUTIONARY ALGORITHMS; WATER ALLOCATION; FLOW; DOMINANCE;
D O I
10.1007/s11269-020-02485-9
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traditional multi-objective evolutionary algorithms treat each objective equally and search randomly in all solution spaces without using preference information. This might reduce the search efficiency and quality of solutions preferred by decision makers, especially when solving problems with complicated properties or many objectives. Three reference point based algorithms which adopt preference information in optimization progress, e.g., R-NSGA-II, r-NSGA-II and g-NSGA-II, have been shown to be effective in finding more preferred solutions in theoretical test problems. However, more efforts are needed to test their effectiveness in real-world problems. This study conducts a comparison of the above three algorithms with a standard algorithm NSGA-II on a reservoir operation problem to demonstrate their performance in improving the search efficiency and quality of preferred solutions. Under the same calculation times of the objective functions, Pareto optimal solutions of the four algorithms are used in the empirical comparison in terms of the approximation to the preferred solutions. Three performance indicators are then adopted for further comparison. Results show that R-NSGA-II and r-NSGA-II can improve the search efficiency and quality of preferred solutions. The convergence and diversity of their solutions in the concerned region are better than NSGA-II, and the closeness degree to the reference point can be increased by 42.8%, and moreover the number of preferred solutions can be increased by more than 3 times when part of objectives are preferred. By contrast, g-NSGA-II shows worse performance. This study exhibits the performance of three reference point based algorithms and provides insights in algorithm selection for multi-objective reservoir optimization problems.
引用
收藏
页码:1005 / 1020
页数:16
相关论文
共 50 条
  • [31] REFERENCE POINT-BASED EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION FOR INDUSTRIAL SYSTEMS SIMULATION
    Siegmund, Florian
    Bernedixen, Jacob
    Pehrsson, Leif
    Ng, Amos H. C.
    Deb, Kalyanmoy
    2012 WINTER SIMULATION CONFERENCE (WSC), 2012,
  • [32] A parallel approximate evaluation-based model for multi-objective operation optimization of reservoir group
    Liu, Dong
    Bai, Tao
    Deng, Mingjiang
    Huang, Qiang
    Wei, Xiaoting
    Liu, Jin
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 78
  • [33] Multi-objective Optimal Multiple Reservoir Operation
    Scola, Luis A.
    Neto, Oriane Magela
    Takahashi, Ricardo H. C.
    Cerqueira, Sergio A. A. G.
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1927 - 1933
  • [34] Multi-objective evolutionary algorithms based fuzzy optimization
    Sánchez, G
    Jiménez, F
    Gómez-Skarmeta, AF
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 1 - 7
  • [35] Multi-Objective Collaborative Optimization Based on Evolutionary Algorithms
    Su Ruiyi
    Gui Liangjin
    Fan Zijie
    JOURNAL OF MECHANICAL DESIGN, 2011, 133 (10)
  • [36] Deep Statistical Comparison for Multi-Objective Stochastic Optimization Algorithms
    Eftimov, Tome
    Korosec, Peter
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 61
  • [37] Applying the new multi-objective algorithms for the operation of a multi-reservoir system in hydropower plants
    Hashemi, Syed Mohsen Samare
    Robati, Amir
    Kazerooni, Mohammad Ali
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [38] Applying the new multi-objective algorithms for the operation of a multi-reservoir system in hydropower plants
    Syed Mohsen Samare Hashemi
    Amir Robati
    Mohammad Ali Kazerooni
    Scientific Reports, 14
  • [39] Incorporating ecological adaptation in a multi-objective optimization for the Three Gorges Reservoir
    Li, Fang-Fang
    Qiu, Jun
    JOURNAL OF HYDROINFORMATICS, 2016, 18 (03) : 564 - 578
  • [40] Solving multi-objective optimization problems in conservation with the reference point method
    Dujardin, Yann
    Chades, Iadine
    PLOS ONE, 2018, 13 (01):