Weight functions in time-frequency analysis

被引:0
|
作者
Groehenig, Karlheinz [1 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
来源
PSEUDO-DIFFERENTIAL OPERATORS: PARTIAL DIFFERENTIAL EQUATIONS AND TIME-FREQUENCY ANALYSIS | 2007年 / 52卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the most common types of weight functions in harmonic analysis and how they occur in time-frequency analysis. As a general rule, submultiplicative weights characterize algebra properties, moderate weights characterize module properties, Gelfand-Raikov-Shilov weights determine spectral invariance, and Beurling-Domar weights guarantee the existence of compactly supported test functions.
引用
收藏
页码:343 / 366
页数:24
相关论文
共 50 条
  • [1] Time-frequency analysis theory for virtual multi-functions, time-frequency analyzer
    Ji, YB
    Qin, SR
    Tang, BP
    Ji, Z
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION SCIENCE AND TECHNOLOGY, VOL 3, 2002, : 495 - 499
  • [2] Characterization of polynomial functions and application to time-frequency analysis
    Universite Paris-Sud, Gif-sur-Yvette, France
    IEEE Trans Signal Process, 5 (1351-1354):
  • [3] Characterization of polynomial functions and application to time-frequency analysis
    Benidir, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (05) : 1351 - 1354
  • [4] Sampling time-frequency localized functions and constructing localized time-frequency frames
    Velasco, G. A. M.
    Doerfler, M.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2017, 28 (05) : 854 - 876
  • [5] Nuclearity of rapidly decreasing ultradifferentiable functions and time-frequency analysis
    Chiara Boiti
    David Jornet
    Alessandro Oliaro
    Gerhard Schindl
    Collectanea Mathematica, 2021, 72 : 423 - 442
  • [6] POWER DISTRIBUTION-FUNCTIONS AND THE TIME-FREQUENCY ANALYSIS OF RADIOSIGNALS
    ALEXEYEV, AA
    KOZHEVNICOV, SV
    ALADINSKY, VA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1986, 29 (09): : 79 - 82
  • [7] Totally Positive Functions in Sampling Theory and Time-Frequency Analysis
    Groechenig, Karlheinz
    MATHEMATICAL ANALYSIS, ITS APPLICATIONS AND COMPUTATION, 2022, 385 : 51 - 73
  • [8] Nuclearity of rapidly decreasing ultradifferentiable functions and time-frequency analysis
    Boiti, Chiara
    Jornet, David
    Oliaro, Alessandro
    Schindl, Gerhard
    COLLECTANEA MATHEMATICA, 2021, 72 (02) : 423 - 442
  • [9] Functions of variable bandwidth via time-frequency analysis tools
    Aceska, R.
    Feichtinger, H. G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) : 275 - 289
  • [10] POSITIVE TIME-FREQUENCY DISTRIBUTION-FUNCTIONS
    COHEN, L
    POSCH, TE
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (01): : 31 - 38