Energy harvesting from mechanical vibrations using multiple magnetostrictive/piezoelectric composite transducers

被引:110
作者
Dai, Xianzhi [1 ,2 ]
Wen, Yumei [1 ,2 ]
Li, Ping [1 ,2 ]
Yang, Jin [1 ,2 ]
Li, Ming [1 ,2 ]
机构
[1] Minist Educ, Key Lab Optoelect Technol & Syst, Chongqing, Peoples R China
[2] Chongqing Univ, Coll Optoelect Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy harvesting; Vibration harvester; Magnetoelectric effect; Magnetostrictive/piezoelectric laminate composite; Multiple transducers; MAGNETOELECTRIC LAMINATE COMPOSITES; WIRELESS; TRANSVERSE;
D O I
10.1016/j.sna.2010.12.025
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes an energy harvester employing multiple Terfenol-D/Pb(Mg1/3Nb2/3)O-3-PbTiO3/Terfenol-D laminate magnetoelectric transducers to convert ambient mechanical vibration into electrical energy. The harvester uses four magnets arranged on the free end of a cantilever beam. The multiple transducers are placed in the air gap between the magnets. The optimal initial positions of the transducers at the static equilibrium are analyzed. And the output characteristics of the harvester employing various numbers of transducers are experimentally studied. Experimental results indicate that the harvester employing multiple transducers can provide higher power and power density. The harvester employing four transducers produces a maximum output power of 7.13 mW, which is 3.95 times higher than that of the harvester employing a single transducer, and the harvester employing two transducers produces a maximum output power of 4.07 mW, which is 1.83 times higher than that of the harvester employing a single transducer. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 101
页数:8
相关论文
共 21 条
[1]   Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites [J].
Bayrashev, A ;
Robbins, WP ;
Ziaie, B .
SENSORS AND ACTUATORS A-PHYSICAL, 2004, 114 (2-3) :244-249
[2]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[3]  
Bian LX, 2009, IEEE SENS J, V9, P45, DOI [10.1109/JSEN.2008.2008408, 10.1109/JSEN.2009.2008408]
[4]   Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite transducer [J].
Dai, Xianzhi ;
Wen, Yumei ;
Li, Ping ;
Yang, Jin ;
Zhang, Gaoyong .
SENSORS AND ACTUATORS A-PHYSICAL, 2009, 156 (02) :350-358
[5]   Multimodal system for harvesting magnetic and mechanical energy [J].
Dong, Shuxiang ;
Zhai, Junyi ;
Li, J. F. ;
Viehland, D. ;
Priya, S. .
APPLIED PHYSICS LETTERS, 2008, 93 (10)
[6]   Fe-Ga/Pb(Mg1/3Nb2/3)O3-PbTiO3 magnetoelectric laminate composites -: art. no. 222504 [J].
Dong, SX ;
Zhai, JY ;
Wang, NG ;
Bai, FM ;
Li, JF ;
Viehland, D ;
Lograsso, TA .
APPLIED PHYSICS LETTERS, 2005, 87 (22) :1-3
[7]   A longitudinal-longitudinal mode TERFENOL-D/Pb(Mg1/3Nb2/3)O3-PbTiO3 laminate composite [J].
Dong, SX ;
Li, JF ;
Viehland, D .
APPLIED PHYSICS LETTERS, 2004, 85 (22) :5305-5306
[8]   Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: Experiments [J].
Dong, SX ;
Li, JF ;
Viehland, D .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2004, 51 (07) :794-799
[9]   Characterization of magnetoelectric laminate composites operated in longitudinal-transverse and transverse-transverse modes [J].
Dong, SX ;
Li, JF ;
Viehland, D .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (05) :2625-2630
[10]   Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: Theory [J].
Dong, SX ;
Li, JF ;
Viehland, D .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2003, 50 (10) :1253-1261