Stabilized non-dissipative approximations of Euler equations in generalized curvilinear coordinates

被引:63
作者
Pirozzoli, Sergio [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Ingn Meccan & Aerospaziale, I-00184 Rome, Italy
关键词
Finite difference schemes; Compressible flows; Energy conservation; Split convective operators; Generalized curvilinear coordinates; FINITE-DIFFERENCE SCHEMES; KINETIC-ENERGY; GAS-DYNAMICS; ENTROPY; CONSERVATION; FORMULATION; SIMULATION; ERRORS; TERMS; FLOW;
D O I
10.1016/j.jcp.2011.01.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We discuss stabilization strategies for finite-difference approximations of the compressible Euler equations in generalized curvilinear coordinates that do not rely on explicit upwinding or filtering of the physical variables. Our approach rather relies on a skew-symmetric-like splitting of the convective derivatives, that guarantees preservation of kinetic energy in the semi-discrete, low-Mach-number limit. A locally conservative formulation allows efficient implementation and easy incorporation into existing compressible flow solvers. The validity of the approach is tested for benchmark flow cases, including the propagation of a cylindrical vortex, and the head-on collision of two vortex dipoles. The tests support high accuracy and superior stability over conventional central discretization of the convective derivatives. The potential use for DNS/LES of turbulent compressible flows in complex geometries is discussed. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2997 / 3014
页数:18
相关论文
共 35 条
[1]  
[Anonymous], ANN RES BRIEFS
[2]  
Batchelor GK, 1967, An introduction to fluid dynamics
[3]   The effect of the formulation of nonlinear terms on aliasing errors in spectral methods [J].
Blaisdell, GA ;
Spyropoulos, ET ;
Qin, JH .
APPLIED NUMERICAL MATHEMATICS, 1996, 21 (03) :207-219
[4]   Computational aeroacoustics: progress on nonlinear problems of sound generation [J].
Colonius, T ;
Lele, SK .
PROGRESS IN AEROSPACE SCIENCES, 2004, 40 (06) :345-416
[5]   High order conservative finite difference scheme for variable density low Mach number turbulent flows [J].
Desjardins, Olivier ;
Blanquart, Guillaume ;
Balarac, Guillaume ;
Pitsch, Heinz .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (15) :7125-7159
[6]  
Feiereisen W. J., 1981, 13 TF STANF U THERM
[7]   Compressible Large-Eddy Simulation of Separation Control on a Wall-Mounted Hump [J].
Franck, Jennifer A. ;
Colonius, Tim .
AIAA JOURNAL, 2010, 48 (06) :1098-1107
[8]  
FUENTES OUV, 1995, PHYS FLUIDS, V7, P2735, DOI 10.1063/1.868652
[9]  
Honein AE, 2004, J COMPUT PHYS, V201, P531, DOI [10.1016/j.jcp.2004.06.006, 10.1016/j.jcp.2004 06.006]
[10]   Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes [J].
Jameson, Antony .
JOURNAL OF SCIENTIFIC COMPUTING, 2008, 34 (02) :188-208