A class of global large solutions to the compressible Navier-Stokes-Korteweg system in critical Besov spaces

被引:13
作者
Zhang, Shunhang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
关键词
Compressible Navier-Stokes-Korteweg system; Critical Besov spaces; Global well-posedness; Littlewood-Paley theory; OPTIMAL DECAY-RATES; FLUID MODELS; EXISTENCE; EQUATIONS; LIMIT; STABILITY;
D O I
10.1007/s00028-020-00565-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem for the compressible Navier-Stokes-Korteweg system in critical Besov spaces. The global solutions are established under a nonlinear smallness assumption on the initial data, whether the sound speed is positive or equal to zero. Furthermore, we explain that this kind of nonlinear smallness condition is large in the sense that we can construct an example of initial data satisfying it, even though each component of the initial velocity can be arbitrarily large in B-p,1(n/p-1).
引用
收藏
页码:1531 / 1561
页数:31
相关论文
共 26 条
[1]  
[Anonymous], 2011, Fundamental Principles of Mathematical Sciences
[2]   VANISHING CAPILLARITY LIMIT OF THE COMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE TO THE NAVIER-STOKES EQUATIONS [J].
Bian, Dongfen ;
Yao, Lei ;
Zhu, Changjiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) :1633-1650
[3]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[5]  
Charve F., 2018, ARXIV180501764
[6]   EXISTENCE OF A GLOBAL STRONG SOLUTION AND VANISHING CAPILLARITY-VISCOSITY LIMIT IN ONE DIMENSION FOR THE KORTEWEG SYSTEM [J].
Charve, Frederic ;
Haspot, Boris .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (02) :469-494
[7]   Wellposedness and stability results for the Navier-Stokes equations in R3 [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02) :599-624
[8]   Global Well-Posedness and Time-Decay Estimates of the Compressible Navier-Stokes-Korteweg System in Critical Besov Spaces [J].
Chikami, Noboru ;
Kobayashi, Takayuki .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2019, 21 (02)
[9]   Existence of solutions for compressible fluid models of Korteweg type [J].
Danchin, R ;
Desjardins, B .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (01) :97-133
[10]   A LAGRANGIAN APPROACH FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Danchin, Raphael .
ANNALES DE L INSTITUT FOURIER, 2014, 64 (02) :753-791