Hippocampus Analysis Based on 3D CNN for Alzheimer's Disease Diagnosis

被引:6
作者
Cui, Ruoxuan [1 ]
Liu, Manhua [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch EIEE, Dept Instrument Sci & Engn, Shanghai, Peoples R China
来源
TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018) | 2018年 / 10806卷
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
Alzheimer's disease; Hippocampus; Convolutional neural network; Deep learning; MILD COGNITIVE IMPAIRMENT; ENTORHINAL CORTEX; ATROPHY; ABNORMALITIES; DEMENTIA; AD;
D O I
10.1117/12.2503194
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Alzheimer's disease (AD) is one of the most common brain dementia, which effects human memory, thinking and behavior. It has been proven that hippocampus is an important region related to AD diagnosis. Most of the existing methods on hippocampus analysis are based on the shape and volume analysis of the bilateral hippocampi. However, the 3D structural magnetic resonance images (MRI) can capture more useful information of hippocampus and its adjacent regions. In this paper, we propose a new method based on deep 3D convolutional neural network (3D CNN) for hippocampus analysis using 3D MR images for AD diagnosis. First, two hippocampi are segmented from other regions and the centers of hippocampus regions are calculated. Then, based on each hippocampus center, a local 3D image patch is extracted from the 3D MR image to cover each hippocampus region. Next, a deep 3D CNN model is constructed to extract the hierarchical imaging features for each hippocampus, followed by a softmax layer to generate a class prediction score for AD diagnosis. Finally, the classification is made by combination of the prediction scores from two hippocampi. Our method is evaluated using T1-weighted structural MR images on 231 subjects including 101 AD patients and 130 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show the proposed method achieves an accuracy of 86.98% for classification of AD vs. NC, demonstrating the promising classification performance.
引用
收藏
页数:6
相关论文
共 21 条
[1]  
[Anonymous], CS294A LECT NOTES
[2]   3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer's disease [J].
Apostolova, Liana G. ;
Dinov, Ivo D. ;
Dutton, Rebecca A. ;
Hayashi, Kiralee M. ;
Toga, Arthur W. ;
Cummings, Jeffrey L. ;
Thompson, Paul M. .
BRAIN, 2006, 129 :2867-2873
[3]   Global prevalence of dementia: a Delphi consensus study [J].
Ferri, CP ;
Prince, M ;
Brayne, C ;
Brodaty, H ;
Fratiglioni, L ;
Ganguli, M ;
Hall, K ;
Hasegawa, K ;
Hendrie, H ;
Huang, YQ ;
Jorm, A ;
Mathers, C ;
Menezes, PR ;
Rimmer, E ;
Scazufca, M .
LANCET, 2005, 366 (9503) :2112-2117
[4]   Presymptomatic hippocampal atrophy in Alzheimer's disease - A longitudinal MRI study [J].
Fox, NC ;
Warrington, EK ;
Freeborough, PA ;
Hartikainen, P ;
Kennedy, AM ;
Stevens, JM ;
Rossor, MN .
BRAIN, 1996, 119 :2001-2007
[5]   In vivo neuropathology of the hippocampal formation in AD: A radial mapping MR-based study [J].
Frisoni, G. B. ;
Sabattoli, F. ;
Lee, A. D. ;
Dutton, R. A. ;
Toga, A. W. ;
Thompson, P. M. .
NEUROIMAGE, 2006, 32 (01) :104-110
[6]  
Gupta Ashish., 2013, Proceedings of the 30th International Conference on International Conference on Machine Learning, V28, pIII
[7]  
Hu Ling-jing, 2012, Journal of Beijing University of Technology, V38, P942
[8]   Comparison of different MRI brain atrophy, rate measures with clinical disease progression in AD [J].
Jack, CR ;
Shiung, MM ;
Gunter, JL ;
O'Brien, PC ;
Weigand, SD ;
Knopman, DS ;
Boeve, BF ;
Ivnik, RJ ;
Smith, GE ;
Cha, RH ;
Tangalos, EG ;
Petersen, RC .
NEUROLOGY, 2004, 62 (04) :591-600
[9]  
Juottonen K, 1999, AM J NEURORADIOL, V20, P139
[10]   Texture Analysis: A Review of Neurologic MR Imaging Applications [J].
Kassner, A. ;
Thornhill, R. E. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2010, 31 (05) :809-816