Whitham modulation theory for the Kadomtsev-Petviashvili equation

被引:29
作者
Ablowitz, Mark J. [1 ]
Biondini, Gino [2 ,3 ]
Wang, Qiao [2 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80303 USA
[2] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
[3] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2017年 / 473卷 / 2204期
基金
美国国家科学基金会;
关键词
Kadomtsev-Petviashvili equation; small dispersion limit; Whitham equations; dispersive shock waves; dispersive regularizations; water waves; DISPERSIVE SHOCK-WAVES; DE-VRIES EQUATION; CAUCHY-PROBLEM; SYSTEMS; INTEGRABILITY; STABILITY;
D O I
10.1098/rspa.2016.0695
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The genus(-1) Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vriese quation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.
引用
收藏
页数:23
相关论文
共 54 条
[1]  
Ablowitz M. J., 1981, SOLITONS INVERSE SCA, DOI DOI 10.1137/1.9781611970883
[2]  
Ablowitz M. J., SOLITONS NONLINEAR E
[3]   Dispersive shock waves in the Kadomtsev-Petviashvili and two dimensional Benjamin-Ono equations [J].
Ablowitz, Mark J. ;
Demirci, Ali ;
Ma, Yi-Ping .
PHYSICA D-NONLINEAR PHENOMENA, 2016, 333 :84-98
[4]  
[Anonymous], 2010, Handbook of Mathematical Functions
[5]  
[Anonymous], 1974, Sov. Phys.-JETP
[6]  
Belokolos E. D., 1994, Algebro-geometric approach to nonlinear integrable equations
[7]   Dispersive hydrodynamics: Preface [J].
Biondini, G. ;
El, G. A. ;
Hoefer, M. A. ;
Miller, P. D. .
PHYSICA D-NONLINEAR PHENOMENA, 2016, 333 :1-5
[8]   On a family of solutions of the Kadomtsev-Petviashvili equation which also satisfy the Toda lattice hierarchy [J].
Biondini, G ;
Kodama, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (42) :10519-10536
[9]   Soliton solutions of the Kadomtsev-Petviashvili II equation [J].
Biondini, G ;
Chakravarty, S .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (03)
[10]   Line soliton interactions of the Kadomtsev-Petviashvili equation [J].
Biondini, Gino .
PHYSICAL REVIEW LETTERS, 2007, 99 (06)