Molecular simulation studies of separation of CH4/H2 mixture in metal-organic frameworks with interpenetration and mixed-ligand

被引:32
|
作者
Liu, Bei [1 ]
Sun, Changyu [1 ]
Chen, Guangjin [1 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
关键词
Separations; Adsorption; Diffusion; Simulation; Metal-organic framework; Natural gas; MONTE-CARLO-SIMULATION; HYDROGEN STORAGE; DYNAMICS SIMULATIONS; SELECTIVE SORPTION; LEVEL SEGREGATION; METHANE STORAGE; GAS MOLECULES; CO2; CAPTURE; FORCE-FIELD; ADSORPTION;
D O I
10.1016/j.ces.2011.04.004
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In our previous work, we have investigated the adsorption selectivity of CH4/H-2 in three pairs of isoreticular metal-organic frameworks (IRMOFs) with and without interpenetration to study the effect of interpenetration on gas mixture separation through Monte Carlo simulation. In addition, the self-diffusivities and the diffusion mechanism of single H-2 and CH4 in these MOFs were examined by molecular dynamics simulations. In this work, we extend our previous work to mixed-ligand MOFs to investigate the effects of interpenetration as well as mixed-ligand on both equilibrium-based and kinetic-based gas mixture separation. We found that methane adsorption selectivity is much enhanced in the selected mixed-ligand interpenetrated MOFs compared with their non-interpenetrated counterparts, similar to what we found before for IRMOFs with single-ligand. At room temperature and atmospheric pressure, molecular-level segregation was observed in the mixed-ligand MOFs, and the extent of the effects of interpenetration is comparable for single-ligand and mixed-ligand MOFs. In addition, we found that the diffusion selectivity in the interpenetrated MOFs is similar to the one in their non-interpenetrated counterparts, while the permeation selectivity in the former is much higher than that in the latter, which corroborates our expectation that interpenetration is a good strategy to improve the overall performance of a material as a membrane in separation applications based only on the single component diffusion results. Furthermore, the CH4 permeability of the selected MOF membrane was also evaluated. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3012 / 3019
页数:8
相关论文
共 50 条
  • [21] Metal-organic frameworks for H2 and CH4 storage: insights on the pore geometry-sorption energetics relationship
    Alkordi, Mohamed H.
    Belmabkhout, Youssef
    Cairns, Amy
    Eddaoudi, Mohamed
    IUCRJ, 2017, 4 : 131 - 135
  • [22] Mixed-ligand metal-organic frameworks incorporating rigid and flexible linkers
    Muguru, K.
    Oliver, C.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : E707 - E707
  • [23] Comparative Molecular Simulation Study of CO2/N2 and CH4/N2 Separation in Zeolites and Metal-Organic Frameworks
    Liu, Bei
    Smit, Berend
    LANGMUIR, 2009, 25 (10) : 5918 - 5926
  • [24] Multiscale Computational Study on the Adsorption and Separation of CO2/CH4 and CO2/H2 on Li+-Doped Mixed-Ligand Metal-Organic Framework Zn2(NDC)2(diPyNI)
    Sokhanvaran, Vahid
    Yeganegi, Saeid
    CHEMPHYSCHEM, 2016, 17 (24) : 4124 - 4133
  • [25] Decorated Traditional Zeolites with Subunits of Metal-Organic Frameworks for CH4/N2 Separation
    Wu, Yaqi
    Yuan, Danhua
    He, Dawei
    Xing, Jiacheng
    Zeng, Shu
    Xu, Shutao
    Xu, Yunpeng
    Liu, Zhongmin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (30) : 10241 - 10244
  • [26] Molecular tectonics of mixed-ligand metal-organic frameworks: Positional isomeric effect, and structural diversification
    Cai, Hua
    Xu, Chong
    Zhou, Yu-Ping
    Tong, Xiao-Qiang
    Guo, Ying
    JOURNAL OF MOLECULAR STRUCTURE, 2016, 1108 : 263 - 268
  • [27] Ionic Liquid-Impregnated Metal-Organic Frameworks for CO2/CH4 Separation
    Ferreira, Tiago J.
    Ribeiro, Rui P. P. L.
    Mota, Jose P. B.
    Rebelo, Luis P. N.
    Esperanca, Jose M. S. S.
    Esteves, Isabel A. A. C.
    ACS APPLIED NANO MATERIALS, 2019, 2 (12) : 7933 - 7950
  • [28] Metal-organic frameworks: metathesis of zinc(Ⅱ) with copper(Ⅱ) for efficient CO2/CH4 separation
    Liu Z.
    Wang Y.
    Hao C.
    Liu X.
    Huagong Xuebao/CIESC Journal, 2021, 72 : 546 - 553
  • [29] Computational simulation study on adsorption and separation of CH4/H2 in five higher-valency covalent organic frameworks
    Li, Xiao-Dong
    Yang, Peng-hui
    Huang, Xiao-Yu
    Liu, Xiu-Ying
    Yu, Jing-Xin
    Chen, Zheng
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [30] Exploring the interplay of adsorption and diffusion for separation of CO2/CH4 in zeolite-like metal-organic frameworks by a molecular dynamics simulation
    He, P.
    Liu, H.
    Li, Y.
    Huang, S.
    Zhu, J.
    Tian, H.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2011, 225 (L4) : 288 - 297