Interdomain dynamics and ligand binding: molecular dynamics simulations of glutamine binding protein

被引:62
作者
Pang, A [1 ]
Arinaminpathy, Y [1 ]
Sansom, MSP [1 ]
Biggin, PC [1 ]
机构
[1] Univ Oxford, Dept Biochem, Lab Mol Biophys, Oxford OX1 3QU, England
基金
英国生物技术与生命科学研究理事会;
关键词
glutamine; periplasmic binding protein; essential dynamics; molecular simulation;
D O I
10.1016/S0014-5793(03)00866-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Periplasmic binding proteins from Gram-negative bacteria possess a common architecture, comprised of two domains linked by a hinge region, a fold which they share with the neurotransmitter-binding domains of ionotropic glutamate receptors (GluRs). Glutamine-binding protein (GlnBP) is one such protein, whose crystal structure has been solved in both open and closed forms. Multi-nanosecond molecular dynamics simulations have been used to explore motions about the hinge region and how they are altered by ligand binding. Glutamine binding is seen to significantly reduce inter-domain motions about the hinge region. Essential dynamics analysis of inter-domain motion revealed the presence of both hinge-bending and twisting motions, as has been reported for a related sugar-binding protein. Significantly, the influence of the ligand on GlnBP dynamics is similar to that previously observed in simulations of rat glutamate receptor (GluR2) ligand-binding domain. The essential dynamics analysis of GlnBP also revealed a third class of motion which suggests a mechanism for signal transmission in GluRs. (C) 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
引用
收藏
页码:168 / 174
页数:7
相关论文
共 42 条
[1]   Electrostatics and the ion selectivity of ligand-gated channels [J].
Adcock, C ;
Smith, GR ;
Sansom, MSP .
BIOPHYSICAL JOURNAL, 1998, 75 (03) :1211-1222
[2]   ESSENTIAL DYNAMICS OF PROTEINS [J].
AMADEI, A ;
LINSSEN, ABM ;
BERENDSEN, HJC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :412-425
[4]   Molecular dynamics simulations of the ligand-binding domain of the ionotropic glutamate receptor GluR2 [J].
Arinaminpathy, Y ;
Sansom, MSP ;
Biggin, PC .
BIOPHYSICAL JOURNAL, 2002, 82 (02) :676-683
[5]   Mechanisms for activation and antagonism of an AMPA-Sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core [J].
Armstrong, N ;
Gouaux, E .
NEURON, 2000, 28 (01) :165-181
[6]   Structure of a glutamate-receptor ligand-binding core in complex with kainate [J].
Armstrong, N ;
Sun, Y ;
Chen, GQ ;
Gouaux, E .
NATURE, 1998, 395 (6705) :913-917
[7]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[8]  
Boos W., 1996, Escherichia coli and Salmonella, V1, P1175
[9]   Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors [J].
Brejc, K ;
van Dijk, WJ ;
Klaassen, RV ;
Schuurmans, M ;
van der Oost, J ;
Smit, AB ;
Sixma, TK .
NATURE, 2001, 411 (6835) :269-276
[10]   Type I secretion and multidrug efflux: transport through the TolC channel-tunnel [J].
Buchanan, SK .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (01) :3-6